首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  2019年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  1999年   2篇
  1984年   1篇
  1982年   2篇
  1980年   2篇
排序方式: 共有22条查询结果,搜索用时 453 毫秒
11.
12.
The structural deviations as well as the alteration in the dynamics of DNA at mismatch sites are considered to have a crucial role in mismatch recognition followed by its repair utilizing mismatch repair family proteins. To compare the dynamics at a mismatch and a non-mismatch site, we incorporated 2-aminopurine, a fluorescent analogue of adenine next to a G.T mismatch, a C.C mismatch, or an unpaired T, and at several other non-mismatch positions. Rotational diffusion of 2-aminopurine at these locations, monitored by time-resolved fluorescence anisotropy, showed distinct differences in the dynamics. This alteration in the motional dynamics is largely confined to the normally matched base-pairs that are immediately adjacent to a mismatch/ unpaired base and could be used by MutS as a cue for mismatch-specific recognition. Interestingly, the enhanced dynamics associated with base-pairs adjacent to a mismatch are significantly restricted upon MutS binding, perhaps “resetting” the cues for downstream events that follow MutS binding. Recognition of such details of motional dynamics of DNA for the first time in the current study enabled us to propose a model that integrates the details of mismatch recognition by MutS as revealed by the high-resolution crystal structure with that of observed base dynamics, and unveils a minimal composite read-out involving the base mismatch and its adjacent normal base-pairs.  相似文献   
13.
Nicotinic acid is a commonly used anti-dyslipidemic agent that increases plasma levels of HDL-cholesterol and decrease triglycerides (TG), and VLDL- and LDL-cholesterol. The most well-studied effect of nicotinic acid is its ability to lower plasma free fatty acids, which has been observed in humans and many animal models. However, its ability to raise HDL in humans has not been replicated in animal models, which precludes studying the mechanism of HDL elevation. Here we studied lipid-modulating effects of nicotinic acid in mice carrying genomic DNA fragments that drive expression of various human genes in the mouse liver. Treatment with nicotinic acid reduced serum levels of HDL cholesterol in wild-type and human apolipoprotein B100 (apoB100)-transgenic mice. In contrast, nicotinic acid treatment of mice that express human cholesteryl ester transfer protein (CETP), with or without concomitant apoB100 expression, resulted in a significant increase of HDL cholesterol and reduction of TG, VLDL- and LDL-cholesterol. These data demonstrate a critical role of CETP in nicotinic acid-mediated HDL elevation, and suggest that mice carrying the human CETP gene may be useful animal models for studying the HDL-elevating effect of nicotinic acid.  相似文献   
14.

Background

Negative-staining (NS), a rapid, simple and conventional technique of electron microscopy (EM), has been commonly used to initially study the morphology and structure of proteins for half a century. Certain NS protocols however can cause artifacts, especially for structurally flexible or lipid-related proteins, such as lipoproteins. Lipoproteins were often observed in the form of rouleau as lipoprotein particles appeared to be stacked together by conventional NS protocols. The flexible components of lipoproteins, i.e. lipids and amphipathic apolipoproteins, resulted in the lipoprotein structure being sensitive to the NS sample preparation parameters, such as operational procedures, salt concentrations, and the staining reagents.

Scope of review

The most popular NS protocols that have been used to examine lipoprotein morphology and structure were reviewed.

Major conclusions

The comparisons show that an optimized NS (OpNS) protocol can eliminate the rouleau artifacts of lipoproteins, and that the lipoproteins are similar in size and shape as statistically measured from two EM methods, OpNS and cryo-electron microscopy (cryo-EM). OpNS is a high-throughput, high-contrast and high-resolution (near 1 nm, but rarely better than 1 nm) method which has been used to discover the mechanics of a small protein, 53 kDa cholesterol ester transfer protein (CETP), and the structure of an individual particle of a single protein by individual-particle electron tomography (IPET), i.e. a 14 Å-resolution IgG antibody three-dimensional map.

General significance

It is suggested that OpNS can be used as a general protocol to study the structure of proteins, especially highly dynamic proteins with equilibrium-fluctuating structures.  相似文献   
15.
MutS functions in mismatch repair (MMR) to scan DNA for errors, identify a target site and trigger subsequent events in the pathway leading to error removal and DNA re-synthesis. These actions, enabled by the ATPase activity of MutS, are now beginning to be analyzed from the perspective of the protein itself. This study provides the first ensemble transient kinetic data on MutS conformational dynamics as it works with DNA and ATP in MMR. Using a combination of fluorescence probes (on Thermus aquaticus MutS and DNA) and signals (intensity, anisotropy and resonance energy transfer), we have monitored the timing of key conformational changes in MutS that are coupled to mismatch binding and recognition, ATP binding and hydrolysis, as well as sliding clamp formation and signaling of repair. Significant findings include (a) a slow step that follows weak initial interaction between MutS and DNA, in which concerted conformational changes in both macromolecules control mismatch recognition, and (b) rapid, binary switching of MutS conformations that is concerted with ATP binding and hydrolysis and (c) is stalled after mismatch recognition to control formation of the ATP-bound MutS sliding clamp. These rate-limiting pre- and post-mismatch recognition events outline the mechanism of action of MutS on DNA during initiation of MMR.  相似文献   
16.
Lipoprotein(a), Lp(a), is an atherogenic lipoprotein consisting of an LDL like core particle and a covalently linked glycoprotein of variable size. Lp(a), isolated from serum always contains LDL and HDL(2) as contaminants since Lp(a) floats in the density range 1.05-1.12 g/ml which overlaps that of LDL and HDL(2). Purified Lp(a) is increasingly needed as a standard to overcome various problems in the standardization of Lp(a) measurements and for in vitro biological studies. Problems inherent to the purification of Lp(a) include the aggregation of Lp(a) with LDL, overlapping size distribution and the inability of some fractions to bind to affinity columns. Here, we describe the development of a new method to purify Lp(a) from contaminating LDL and HDL(2) particles. Lp(a) was isolated from serum by sequential ultracentrifugation, resolved by native polyacrylamide gel electrophoresis and the gel segments were electroeluted to obtain pure Lp(a). l-Proline was added to the sample to a final concentration of 0.1 M to prevent the aggregation of Lp(a) with LDL.  相似文献   
17.
On the metabolic function of heparin-releasable liver lipase   总被引:13,自引:0,他引:13  
Intravenous administration of specific antibody against heparin-releasable liver lipase (liver lipase) induced a 75% inhibition of the enzyme activity in situ. Administration of the antibody resulted in an increase of high density lipoprotein (density range 1.050–1.13 g/ml; HDL2) phospholipid levels (20% after 1 h; 54% after 4 h). Short-term (1 h) treatment with antibody had no significant effect on any of the other lipoprotein components. After long-term (4 h) treatment the free cholesterol level of HDL2 and all components in the very low density lipoprotein (VLDL) + intermediate density lipoprotein (IDL) fraction were elevated (1.5–2.0 fold). In the low density lipoprotein (LDL) fraction only the phospholipid level was affected (increased by 72%). All lipid components in the HDL3 fraction were decreased by the antibody treatment, but this decrease was only statistically significant for the cholesterolesters. The rate of removal of iodine-labeled high density lipoprotein (HDL) and LDL from serum was not affected by the antibody treatment.These results suggest that liver lipase may promote phospholipid removal in vivo and show that a lowering of liver lipase in situ has profound consequences for serum lipoprotein metabolism.  相似文献   
18.
In previous studies, it was shown that lipid microemulsions resembling LDL (LDE) but not containing protein, acquire apolipoprotein E when injected into the bloodstream and bind to LDL receptors (LDLR) using this protein as ligand. Aiming to evaluate the effects of apolipoprotein (apo) B-100 on the catabolism of these microemulsions, LDE with incorporated apo B-100 (LDE-apoB) and native LDL, all labeled with radioactive lipids were studied after intraarterial injection into Wistar rats. Plasma decay curves of the labels were determined in samples collected over 10 h and tissue uptake was assayed from organs excised from the animals sacrificed 24 h after injection. LDE-apo B had a fractional clearance rate (FCR) similar to native LDL (0.40 and 0.33, respectively) but both had FCR pronouncedly smaller than LDE (0.56, P<0.01). Liver was the main uptake site for LDE, LDE-apoB, and native LDL, but LDE-apoB and native LDL had lower hepatic uptake rates than LDE. Pre-treatment of the rats with 17α-ethinylestradiol, known to upregulate LDLR, accelerated the removal from plasma of both LDE and LDE-apoB, but the effect was greater upon LDE than LDE-apoB. These differences in metabolic behavior documented in vivo can be interpreted by the lower affinity of LDLR for apo B-100 than for apo E, demonstrated in in vitro studies. Therefore, our study shows in vivo that, in comparison with apo E, apo B is a less efficient ligand to remove lipid particles such as microemulsions or lipoproteins from the intravascular compartment.  相似文献   
19.
20.
Local acidic areas characterize diffuse intimal thickening (DIT) and advanced atherosclerotic lesions. The role of acidity in the modification and extra- and intracellular accumulation of triglyceride-rich VLDL and IDL particles has not been studied before. Here, we examined the effects of acidic pH on the activity of recombinant human group V secreted phospholipase A2 (sPLA2-V) toward small VLDL (sVLDL), IDL, and LDL, on the binding of these apoB-100-containing lipoproteins to human aortic proteoglycans, and on their uptake by human monocyte-derived macrophages. At acidic pH, the ability of sPLA2-V to lipolyze the apoB-100-containing lipoproteins was moderately, but significantly, increased while binding of the lipoproteins to proteoglycans increased > 60-fold and sPLA2-V-modification further doubled the binding. Moreover, acidic pH more than doubled macrophage uptake of soluble complexes of sPLA2-V-LDL with aortic proteoglycans. Proteoglycan-affinity chromatography at pH 7.5 and 5.5 revealed that sVLDL, IDL, and LDL consisted of populations with different proteoglycan-binding affinities, and, surprisingly, the sVLDL fractions with the highest proteoglycan-affinity contained only low amounts of apolipoproteins E and C-III. Our results suggest that in atherosclerotic lesions with acidic extracellular pH, sPLA2-V is able to lipolyze sVLDL, IDL, and LDL, and increase their binding to proteoglycans. This is likely to provoke extracellular accumulation of lipids derived from these atherogenic lipoprotein particles and to increase the progression of the atherosclerotic lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号