首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2315篇
  免费   22篇
  国内免费   5篇
  2342篇
  2023年   5篇
  2022年   5篇
  2021年   10篇
  2020年   4篇
  2019年   9篇
  2018年   11篇
  2017年   8篇
  2016年   10篇
  2015年   28篇
  2014年   168篇
  2013年   328篇
  2012年   387篇
  2011年   459篇
  2010年   354篇
  2009年   32篇
  2008年   37篇
  2007年   41篇
  2006年   39篇
  2005年   23篇
  2004年   22篇
  2003年   30篇
  2002年   26篇
  2001年   19篇
  2000年   17篇
  1999年   19篇
  1998年   17篇
  1997年   27篇
  1996年   17篇
  1995年   10篇
  1994年   15篇
  1993年   12篇
  1992年   12篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   13篇
  1984年   17篇
  1983年   18篇
  1982年   16篇
  1981年   10篇
  1980年   6篇
  1979年   5篇
  1978年   9篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1972年   4篇
排序方式: 共有2342条查询结果,搜索用时 0 毫秒
981.
RIL (product of PDLIM4 gene) is an actin-associated protein that has previously been shown to stimulate actin bundling by interacting with actin-cross-linking protein α-actinin-1 and increasing its affinity to filamentous actin. Here, we report that the alternatively spliced isoform of RIL, denoted here as RILaltCterm, functions as a dominant-negative modulator of RIL-mediated actin reorganization. RILaltCterm is regulated at the level of protein stability, and this protein isoform accumulates particularly in response to oxidative stress. We show that the alternative C-terminal segment of RILaltCterm has a disordered structure that directs the protein to rapid degradation in the core 20 S proteasomes. Such degradation is ubiquitin-independent and can be blocked by binding to NAD(P)H quinone oxidoreductase NQO1, a detoxifying enzyme induced by prolonged exposure to oxidative stress. We show that either overexpression of RILaltCterm or its stabilization by stresses counteracts the effects produced by full-length RIL on organization of actin cytoskeleton and cell motility. Taken together, the data suggest a mechanism for fine-tuning actin cytoskeleton rearrangement in response to stresses.  相似文献   
982.
Programmed cell death (PCD) associated with immunity is triggered when a plant disease resistance (R) protein recognizes a corresponding pathogen virulence protein. In tomato, detection by the host Pto kinase of the Pseudomonas syringae proteins AvrPto or AvrPtoB causes localized PCD. Previously, we reported that both MAPKKKα (mitogen-activated protein kinase kinase kinase) and the tomato 14-3-3 protein 7 (TFT7) positively regulate Pto-mediated PCD in tomato and Nicotiana benthamiana. In addition, in contrast to MAPKKKα, TFT7 is required for PCD mediated by four other R proteins. Here we investigate why TFT7 is required for PCD induced by diverse R proteins in plants. We discovered that a MAPKK, SlMKK2, which acts downstream of SlMAPKKKα, also interacts with TFT7 in plant cells. Gene silencing experiments revealed that the orthologous genes of both SlMKK2 and TFT7 in N. benthamiana are required for PCD mediated by the same set of R proteins. SlMKK2 and its orthologs contain a 14-3-3 binding site in their N terminus, and Thr(33) in this site is required for interaction with TFT7 in vivo. Like the structurally similar human 14-3-3ε protein, TFT7 forms a homodimer in vivo. Because TFT7 interacts with both SlMAPKKKα and SlMKK2 and also forms a homodimer, we propose that TFT7 may coordinately recruit these client proteins for efficient signal transfer, leading to PCD induction.  相似文献   
983.
S100P is a novel interaction partner and regulator of IQGAP1   总被引:1,自引:0,他引:1  
Ca(2+)-binding proteins of the S100 family participate in intracellular Ca(2+) signaling by binding to and regulating specific cellular targets in their Ca(2+)-loaded conformation. Because the information on specific cellular targets of different S100 proteins is still limited, we developed an affinity approach that selects for protein targets only binding to the physiologically active dimer of an S100 protein. Using this approach, we here identify IQGAP1 as a novel and dimer-specific target of S100P, a member of the S100 family enriched in the cortical cytoskeleton. The interaction between S100P and IQGAP1 is strictly Ca(2+)-dependent and characterized by a dissociation constant of 0.2 μM. Binding occurs primarily through the IQ domain of IQGAP1 and the first EF hand loop of S100P, thus representing a novel structural principle of S100-target protein interactions. Upon cell stimulation, S100P and IQGAP1 co-localize at or in close proximity to the plasma membrane, and complex formation can be linked to altered signal transduction properties of IQGAP1. Specifically, the EGF-induced tyrosine phosphorylation of IQGAP1 that is thought to function in assembling signaling intermediates at IQGAP1 scaffolds in the subplasmalemmal region is markedly reduced in cells overexpressing S100P but not in cells expressing an S100P mutant deficient in IQGAP1 binding. Furthermore, B-Raf binding to IQGAP1 and MEK1/2 activation occurring downstream of IQGAP1 in EGF-triggered signaling cascades are compromised at elevated S100P levels. Thus, S100P is a novel Ca(2+)-dependent regulator of IQGAP1 that can down-regulate the function of IQGAP1 as a signaling intermediate by direct interaction.  相似文献   
984.
Death receptors (DRs) induce apoptosis but also stimulate proinflammatory "non-apoptotic" signaling (e.g. NF-κB and mitogen-activated protein kinase (MAPK) activation) and inhibit distinct steps of DR-activated maturation of procaspase-8. To examine whether isoforms of cellular FLIP (cFLIP) or its cleavage products differentially regulate DR signaling, we established HaCaT cells expressing cFLIP(S), cFLIP(L), or mutants of cFLIP(L) (cFLIP(D376N) and cFLIP(p43)). cFLIP variants blocked TRAIL- and CD95L-induced apoptosis, but the cleavage pattern of caspase-8 in the death inducing signaling complex was different: cFLIP(L) induced processing of caspase-8 to the p43/41 fragments irrespective of cFLIP cleavage. cFLIP(S) or cFLIP(p43) blocked procaspase-8 cleavage. Analyzing non-apoptotic signaling pathways, we found that TRAIL and CD95L activate JNK and p38 within 15 min. cFLIP variants and different caspase inhibitors blocked late death ligand-induced JNK or p38 MAPK activation suggesting that these responses are secondary to cell death. cFLIP isoforms/mutants also blocked death ligand-mediated gene induction of CXCL-8 (IL-8). Knockdown of caspase-8 fully suppressed apoptotic and non-apoptotic signaling. Knockdown of cFLIP isoforms in primary human keratinocytes enhanced CD95L- and TRAIL-induced NF-κB activation, and JNK and p38 activation, underscoring the regulatory role of cFLIP for these DR-mediated signals. Whereas the presence of caspase-8 is critical for apoptotic and non-apoptotic signaling, cFLIP isoforms are potent inhibitors of TRAIL- and CD95L-induced apoptosis, NF-κB activation, and the late JNK and p38 MAPK activation. cFLIP-mediated inhibition of CD95 and TRAIL DR could be of crucial importance during keratinocyte skin carcinogenesis and for the activation of innate and/or adaptive immune responses triggered by DR activation in the skin.  相似文献   
985.
目的:由悬浮培养的黑木耳菌丝体中分离纯化黑木耳的核糖体失活蛋白,对其生化性质及生物学活性进行研究。方法:实验中采用了DEAE-离子交换纤维素,Affi-Gel Blue Gel亲和与Bio-Gel 100柱层析方法。结果:从100g悬浮培养黑木耳菌丝体中得到4.14mg的核糖体失活蛋白,命名为Auriculin。同时证明它在家兔网织红细胞裂解系统中具有抑制蛋白质的翻译活性。结论:经试验证明和文献检索,Auriculin为黑木耳菌分离纯化获得的核糖体失活蛋白,一种新蛋白质。  相似文献   
986.
Control of membrane curvature is required in many important cellular processes, including endocytosis and vesicular trafficking. Endophilin is a bin/amphiphysin/rvs (BAR) domain protein that induces vesicle formation by promotion of membrane curvature through membrane binding as a dimer. Using site-directed spin labeling and EPR spectroscopy, we show that the overall BAR domain structure of the rat endophilin A1 dimer determined crystallographically is maintained under predominantly vesiculating conditions. Spin-labeled side chains on the concave surface of the BAR domain do not penetrate into the acyl chain interior, indicating that the BAR domain interacts only peripherally with the surface of a curved bilayer. Using a combination of EPR data and computational refinement, we determined the structure of residues 63–86, a region that is disordered in the crystal structure of rat endophilin A1. Upon membrane binding, residues 63–75 in each subunit of the endophilin dimer form a slightly tilted, amphipathic α-helix that directly interacts with the membrane. In their predominant conformation, these helices are located orthogonal to the long axis of the BAR domain. In this conformation, the amphipathic helices are positioned to act as molecular wedges that induce membrane curvature along the concave surface of the BAR domain.  相似文献   
987.
Observations of Golgi fragmentation upon introduction of G protein βγ (Gβγ) subunits into cells have implicated Gβγ in a pathway controlling the fission at the trans-Golgi network (TGN) of plasma membrane (PM)-destined transport carriers. However, the subcellular location where Gβγ acts to provoke Golgi fragmentation is not known. Additionally, a role for Gβγ in regulating TGN-to-PM transport has not been demonstrated. Here we report that constitutive or inducible targeting of Gβγ to the Golgi, but not other subcellular locations, causes phospholipase C- and protein kinase D-dependent vesiculation of the Golgi in HeLa cells; Golgi-targeted β1γ2 also activates protein kinase D. Moreover, the novel Gβγ inhibitor, gallein, and the Gβγ-sequestering protein, GRK2ct, reveal that Gβγ is required for the constitutive PM transport of two model cargo proteins, VSV-G and ss-HRP. Importantly, Golgi-targeted GRK2ct, but not a PM-targeted GRK2ct, also blocks protein transport to the PM. To further support a role for Golgi-localized Gβγ, endogenous Gβ was detected at the Golgi in HeLa cells. These results are the first to establish a role for Golgi-localized Gβγ in regulating protein transport from the TGN to the cell surface.  相似文献   
988.
Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.  相似文献   
989.
The PE_PGRS family of proteins unique to mycobacteria is demonstrated to con- rain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel/3-roll or parallel β-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE_PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE_PGRS proteins in the Ught of macrophage-pathogen interaction and pathogenesis is presented.  相似文献   
990.
ClpS is an adaptor protein that interacts with ClpA and promotes degradation of proteins with N-end rule degradation motifs (N-degrons) by ClpAP while blocking degradation of substrates with other motifs. Although monomeric ClpS forms a 1:1 complex with an isolated N-domain of ClpA, only one molecule of ClpS binds with high affinity to ClpA hexamers (ClpA6). One or two additional molecules per hexamer bind with lower affinity. Tightly bound ClpS dissociates slowly from ClpA6 with a t½ of ∼3 min at 37 °C. Maximum activation of degradation of the N-end rule substrate, LR-GFPVenus, occurs with a single ClpS bound per ClpA6; one ClpS is also sufficient to inhibit degradation of proteins without N-degrons. ClpS competitively inhibits degradation of unfolded substrates that interact with ClpA N-domains and is a non-competitive inhibitor with substrates that depend on internal binding sites in ClpA. ClpS inhibition of substrate binding is dependent on the order of addition. When added first, ClpS blocks binding of both high and low affinity substrates; however, when substrates first form committed complexes with ClpA6, ClpS cannot displace them or block their degradation by ClpP. We propose that the first molecule of ClpS binds to the N-domain and to an additional functional binding site, sterically blocking binding of non-N-end rule substrates as well as additional ClpS molecules to ClpA6. Limiting ClpS-mediated substrate delivery to one per ClpA6 avoids congestion at the axial channel and allows facile transfer of proteins to the unfolding and translocation apparatus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号