首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2315篇
  免费   22篇
  国内免费   5篇
  2342篇
  2023年   5篇
  2022年   5篇
  2021年   10篇
  2020年   4篇
  2019年   9篇
  2018年   11篇
  2017年   8篇
  2016年   10篇
  2015年   28篇
  2014年   168篇
  2013年   328篇
  2012年   387篇
  2011年   459篇
  2010年   354篇
  2009年   32篇
  2008年   37篇
  2007年   41篇
  2006年   39篇
  2005年   23篇
  2004年   22篇
  2003年   30篇
  2002年   26篇
  2001年   19篇
  2000年   17篇
  1999年   19篇
  1998年   17篇
  1997年   27篇
  1996年   17篇
  1995年   10篇
  1994年   15篇
  1993年   12篇
  1992年   12篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   13篇
  1984年   17篇
  1983年   18篇
  1982年   16篇
  1981年   10篇
  1980年   6篇
  1979年   5篇
  1978年   9篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1972年   4篇
排序方式: 共有2342条查询结果,搜索用时 15 毫秒
81.
The cardiac Na(+)/Ca(2+) exchanger (NCX) regulates cellular [Ca(2+)](i) and plays a central role in health and disease, but its molecular regulation is poorly understood. Here we report on how protons affect this electrogenic transporter by modulating two critically important NCX C(2) regulatory domains, Ca(2+) binding domain-1 (CBD1) and CBD2. The NCX transport rate in intact cardiac ventricular myocytes was measured as a membrane current, I(NCX), whereas [H(+)](i) was varied using an ammonium chloride "rebound" method at constant extracellular pH 7.4. At pH(i) = 7.2 and [Ca(2+)](i) < 120 nM, I(NCX) was less than 4% that of its maximally Ca(2+)-activated value. I(NCX) increases steeply at [Ca(2+)](i) between 130-150 nM with a Hill coefficient (n(H)) of 8.0 ± 0.7 and K(0.5) = 310 ± 5 nM. At pH(i) = 6.87, the threshold of Ca(2+)-dependent activation of I(NCX) was shifted to much higher [Ca(2+)](i) (600-700 nM), and the relationship was similarly steep (n(H) = 8.0±0.8) with K(0.5) = 1042 ± 15 nM. The V(max) of Ca(2+)-dependent activation of I(NCX) was not significantly altered by low pH(i). The Ca(2+) affinities for CBD1 (0.39 ± 0.06 μM) and CBD2 (K(d) = 18.4 ± 6 μM) were exquisitely sensitive to [H(+)], decreasing 1.3-2.3-fold as pH(i) decreased from 7.2 to 6.9. This work reveals for the first time that NCX can be switched off by physiologically relevant intracellular acidification and that this depends on the competitive binding of protons to its C(2) regulatory domains CBD1 and CBD2.  相似文献   
82.
Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature.  相似文献   
83.
Biologically active spin labelled derivatives of calmodulin were prepared and used to study CA2+- and Mg2+-induced conformational changes of the protein. The rotational correlation time of the spin labelled residues increased upon addition of divalent cations. Two calcium ions per spin labelled calmodulin were found to induce a 75% conformational change, whereas four calcium ions were necessary for a maximum conformational change. The increase in rotational correlation time induced by Mg2+ is less pronounced. Two different covalently attached spin labels (iodoacetamide and maleimide) were compared and marked differences were found in their chemical stability. The binding of manganese ions to calmodulin could be observed directly from the electron paramagnetic resonance spectra of these paramagnetic ions. Two specific classes of binding sites, each binding two manganese ions with kD = 0.6 × 10?6mand kD = 3 × 10?5m, respectively, were determined. Further ion binding occurs at non-specific sites.  相似文献   
84.
The baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) possesses two genes, iap1 and iap2, which encode inhibitor of apoptosis (IAP) proteins. We previously showed that although both genes are dispensable for viral propagation, iap2 is required for efficient viral propagation in cultured cells. BmNPV IAP2 contains three putative functional domains: a baculovirus IAP repeat (BIR), a BIR-like (BIRL) domain, and a RING finger domain. To identify the domain affecting viral growth, we generated a series of BmNPV bacmids expressing iap2 derivatives lacking one or two domains, or possessing a single amino acid substitution to abolish IAP2 ubiquitin ligase activity. We examined their properties in both cultured cells and B. mori larvae. We found that either the BIR or BIRL domain of IAP2 plays an important role in BmNPV infection, and that the RING finger domain, which is required for ubiquitin ligase activity, does not greatly contribute to BmNPV propagation. This is the first study to identify functional domains of the baculovirus IAP2 protein.  相似文献   
85.
Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently.  相似文献   
86.
Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks.  相似文献   
87.
Membrane proteins play essential roles in various cellular processes, such as nutrient transport, bioenergetic processes, cell adhesion, and signal transduction. Proteomics is one of the key approaches to exploring membrane proteins comprehensively. Bottom–up proteomics using LC–MS/MS has been widely used in membrane proteomics. However, the low abundance and hydrophobic features of membrane proteins, especially integral membrane proteins, make it difficult to handle the proteins and are the bottleneck for identification by LC–MS/MS. Herein, to improve the identification and quantification of membrane proteins, we have stepwisely evaluated methods of membrane enrichment for the sample preparation. The enrichment methods of membranes consisted of precipitation by ultracentrifugation and treatment by urea or alkaline solutions. The best enrichment method in the study, washing with urea after isolation of the membranes, resulted in the identification of almost twice as many membrane proteins compared with samples without the enrichment. Notably, the method significantly enhances the identified numbers of multispanning transmembrane proteins, such as solute carrier transporters, ABC transporters, and G-protein–coupled receptors, by almost sixfold. Using this method, we revealed the profiles of amino acid transport systems with the validation by functional assays and found more protein–protein interactions, including membrane protein complexes and clusters. Our protocol uses standard procedures in biochemistry, but the method was efficient for the in-depth analysis of membrane proteome in a wide range of samples.  相似文献   
88.
α-Synuclein is a protein that is intrinsically disordered in vitro and prone to aggregation, particularly at high temperatures. In this work, we examined the ability of curcumin, a compound found in turmeric, to prevent aggregation of the protein. We found strong binding of curcumin to α-synuclein in the hydrophobic non-amyloid-β component region and complete inhibition of oligomers or fibrils. We also found that the reconfiguration rate within the unfolded protein was significantly increased at high temperatures. We conclude that α-synuclein is prone to aggregation because its reconfiguration rate is slow enough to expose hydrophobic residues on the same time scale that bimolecular association occurs. Curcumin rescues the protein from aggregation by increasing the reconfiguration rate into a faster regime.  相似文献   
89.
Silicateins are the key enzymes involved in the enzymatic polycondensation of the inorganic scaffold of the skeletal elements of the siliceous sponges, the spicules. The gene encoding pro-silicatein is inserted into the pCold TF vector, comprising the gene for the bacterial trigger factor. This hybrid gene is expressed in Escherichia coli and the synthesized fusion protein is purified. The fusion protein is split into the single proteins with thrombin by cleavage of the linker sequence present between the two proteins. At 23 °C, the 87 kDa trigger factor-pro-silicatein fusion protein is cleaved to the 51 kDa trigger factor and the 35 kDa pro-silicatein. The cleavage process proceeds and results in the release of the 23 kDa mature silicatein, a process which very likely proceeds by autocatalysis. Almost in parallel with its formation, the mature enzyme precipitates as pure 23 kDa protein. When the precipitate is dissolved in an urea buffer, the solubilized protein displays its full enzymatic activity which is enhanced multi-fold in the presence of the silicatein interactor silintaphin-1 or of poly(ethylene glycol) (PEG). The biosilica product formed increases its compactness if silicatein is supplemented with silintaphin-1 or PEG. The elastic modulus of the silicatein-mediated biosilica product increases in parallel with the addition of silintaphin-1 and/or PEG from 17 MPa (silicatein) via 61 MPa (silicatein:silintaphin-1) to 101 MPa (silicatein:silintaphin-1 and PEG). These data show that the maturation process from the pro-silicatein state to the mature form is the crucial step during which silicatein acquires its structure-guiding and structure-forming properties.  相似文献   
90.
SelB is a specialized translation factor that binds GTP and GDP and delivers selenocysteyl-tRNA (Sec-tRNA(Sec)) to the ribosome. By analogy to elongation factor Tu (EF-Tu), SelB is expected to control the delivery and release of Sec-tRNA(Sec) to the ribosome by the structural switch between GTP- and GDP-bound conformations. However, crystal structures of SelB suggested a similar domain arrangement in the apo form and GDP- and GTP-bound forms of the factor, raising the question of how SelB can fulfill its delivery function. Here, we studied the thermodynamics of guanine nucleotide binding to SelB by isothermal titration calorimetry in the temperature range between 10 and 25 °C using GTP, GDP, and two nonhydrolyzable GTP analogs, guanosine 5'-O-(γ-thio)triphosphate (GTPγS) and guanosine 5'-(β,γ-imido)-triphosphate (GDPNP). The binding of SelB to either guanine nucleotide is characterized by a large heat capacity change (-621, -467, -235, and -275 cal × mol(-1) × K(-1), with GTP, GTPγS, GDPNP, and GDP, respectively), associated with compensatory changes in binding entropy and enthalpy. Changes in heat capacity indicate a large decrease of the solvent-accessible surface area in SelB, amounting to 43 or 32 amino acids buried upon binding of GTP or GTPγS, respectively, and 15-19 amino acids upon binding GDP or GDPNP. The similarity of the GTP and GDP forms in the crystal structures can be attributed to the use of GDPNP, which appears to induce a structure of SelB that is more similar to the GDP than to the GTP-bound form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号