首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1401篇
  免费   49篇
  国内免费   7篇
  2024年   1篇
  2023年   7篇
  2022年   20篇
  2021年   28篇
  2020年   32篇
  2019年   24篇
  2018年   30篇
  2017年   36篇
  2016年   24篇
  2015年   41篇
  2014年   91篇
  2013年   75篇
  2012年   66篇
  2011年   122篇
  2010年   63篇
  2009年   85篇
  2008年   88篇
  2007年   85篇
  2006年   86篇
  2005年   63篇
  2004年   57篇
  2003年   31篇
  2002年   24篇
  2001年   14篇
  2000年   14篇
  1999年   22篇
  1998年   22篇
  1997年   18篇
  1996年   12篇
  1995年   22篇
  1994年   16篇
  1993年   15篇
  1992年   18篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   8篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   8篇
  1983年   5篇
  1982年   9篇
  1981年   8篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1457条查询结果,搜索用时 15 毫秒
991.
Nicotinamide (vitamin B3) reduces the infarct volume following focal cerebral ischemia in rats; however, its mechanism of action has not been reported. After cerebral ischemia and/or reperfusion, reactive oxygen species (ROS) and reactive nitrogen species may be generated by inflammatory cells through several cellular pathways, which can lead to intracellular calcium influx and cell damage. Therefore, we investigated the mechanisms of action of nicotinamide in neuroprotection under conditions of hypoxia/reoxygenation. Results showed that nicotinamide significantly protected rat primary cortical cells from hypoxia by reducing lactate dehydrogenase release with 1 h of oxygen-glucose deprivation (OGD) stress. ROS production and calcium influx in neuronal cells during OGD were dose-dependently diminished by up to 10 mM nicotinamide (p<0.01). This effect was further examined with OGD/reoxygenation (H/R). Cells were stained with the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI) or antibodies against anti-microtubule-associated protein-2 and cleaved caspase-3. Apoptotic cells were studied using Western blotting of cytochrome c and cleaved caspase-3. Results showed that vitamin B3 reduced cell injury, caspase-3 cleavage and nuclear condensation (DAPI staining) in neuronal cells under H/R. In addition, nicotinamide diminished c-fos andzif268 immediate-early gene expressions following OGD. Taken together, these results indicate that the neuroprotective effect of nicotinamide might occur through these mechanisms in this in vitro ischemia/reperfusion model.  相似文献   
992.
Repetitive episodes of hypoxia/reoxygenation induce cellular adaptations resulting in a tolerance process against oxidative stress. We studied the effects of chronic episodes of hypoxia/reoxygenation on neutrophil antioxidant defenses, neutrophil oxidative capability, and oxidative damage induced in neutrophils and plasma. Seven professional apnea divers participated in the study. Blood samples were taken under basal conditions, after a diving apnea session, and under basal conditions after five consecutive days of diving apnea sessions (basal post-diving). Chronic episodes of hypoxia/reoxygenation increased malondialdehyde (MDA), carbonyl derivates and creatine kinase (CPK) in plasma. Neutrophil catalase (CAT) levels were higher in basal post-diving. Neutrophil oxidative burst was maintained after diving, although the maximum response was delayed in basal post-diving. Neutrophil thioredoxin reductase (TR) activity increased in basal post-diving, and glutathione reductase (GR) activity was maintained. Chronic, repetitive episodes of diving apnea induce neutrophil adaptations in order to delay the oxidative burst response and to facilitate protein reduction. Diving apnea could be a good model to study tolerance to the oxidative stress generated by hypoxia/reoxygenation.  相似文献   
993.
994.
Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase that triggers apoptogenic kinase cascade leading to the phosphorylation/activation of c-Jun N-terminal kinases and p38-MAP kinase, which are responsible for inducing apoptotic cell death. This pathway plays a pivotal role in transduction of signals from different apoptotic stimuli. In the present review, we summarized the recent evidence concerning MAP kinase-dependent apoptotic pathway and its regulation in the mammalian cells and organism in vivo. We have shown that the key messengers of regulation of this pathway are the reactive oxygen and nitrogen species. The role of protein oxidation and S-nitrosation in induction of apoptotic cell death via ASK1 is discussed. Also we have outlined other recently discovered signal transduction processes involved in the regulation of ASK1 activity and downstream pathway.  相似文献   
995.
TREK1 is a member of the tandem-P domain K+ channel family which is expressed almost exclusively in the nervous system. It is modulated by a number of important factors including arachidonic acid and cell swelling. Since both factors are associated with brain ischemia, it has been suggested that activation of TREK1 may confer neuroprotection. However, it has been reported that the stably expressed human homologue of TREK1 is inhibited by hypoxia, calling into question its neuroprotective role in ischemia. Here, using transient transfection of HEK 293 cells with several hTREK1 mutations and whole-cell patch-clamp, we show that: hypoxic inhibition: (a) requires the C-terminal domain of the channel; (b) does not involve redox modulation of the C-terminal domain cysteine residues C365 and C399; and (c) is critically dependent on the glutamate residue at position 306. These data suggest strongly that neuroprotection is unlikely to be provided by this channel in low O2 environments and continue to cast a shadow of doubt over the precise role that TREK may have during hypoxic episodes.  相似文献   
996.
We investigated the effects of short- (8- and 24-h) and long-term (3 weeks) exposure to systemic normobaric hypoxia (13%) on the gene expression level of structural proteins and growth factors in knee joint cartilage of rabbits. Collagen type Ia2, II, and Va1, TGF-beta1, and b-FGF were upregulated after short-term hypoxia in both menisci, but not in articular cartilage. In contrast, long-term hypoxia downregulated gene expression level of collagens, aggrecan, and growth factors in articular cartilage and meniscal fibrocartilage. Interestingly, gene expression levels of non-collagenous proteins biglycan, decorin, and versican were not affected by short-term or by long-term hypoxia in knee joint cartilage. The present study suggests that changes in oxygen level differentially affect gene expression levels of growth factors, collagens, and non-collagenous proteins in normal knee joint cartilage in rabbits.  相似文献   
997.
The effects of hypoxia on the levels of essential macroelements and trace elements (K, Na, Ca, Mg, Cu, Zn, Fe, and Mn) in the heart muscles of Wistar rats and plateau pikas (Ochotona curzoniae) were studied by atomic absorption spectrometry. Unlike the rat, the plateau pika is tolerant to hypoxia. The levels of K, Na, and the trace element Mn were not significantly changed in rat or pika hearts after exposure to hypoxia for 1, 10, or 25 d at simulated altitudes of 5000 and 7000 m. Other minerals (Ca, Mg, Cu, Zn, and Fe) were significantly affected by hypoxia and the levels followed different time-courses under different hypoxic regimes in these two animals. There were marked differences between the rat and pika in myocardial accumulation of essential elements such as Ca, which was increased to high levels in the rat but not affected in the pika. The results suggest that hypoxia affects animal physiological mechanisms by regulating the levels of essential elements.  相似文献   
998.
Brain ischemia results in neuronal injury and neurological disability. The present study examined the effect of mild (6% O2) and severe (2% O2) hypoxia on mitochondria of rat cortical synaptosomes. During mild and severe hypoxia, JO2 and ATP production significantly decreased and mitochondrial membranes depolarized. Synaptosomal calcium concentration increased slightly, albeit not significantly. After a 1 h re-oxygenation period, JO2, ATP production and mitochondrial membrane potential returned to control levels in synaptosomes incubated in 6% O2. In synaptosomes incubated in 2% O2, however, the ATP production was not restored after re-oxygenation and intrasynaptosomal Ca2+ significantly increased. The results indicate that both mild and severe hypoxia influence the physiology of synaptosomal mitochondria; the modifications are reversible after mild hypoxia and but partly irreversible after severe hypoxia.  相似文献   
999.
Effects of hypoxia on the proliferation and differentiation of NSCs   总被引:19,自引:0,他引:19  
Zhu LL  Wu LY  Yew DT  Fan M 《Molecular neurobiology》2005,31(1-3):231-242
Oxygen is vital to nearly all forms of life on Earth via its role in energy homeostasis and other cell functions. Until recently, the effects of oxygen on the proliferation and differentiation of neural stem cells (NSCs) have been largely ignored. Some studies have been carried out on the basis of the fact that NSCs exists within a “physiological hypoxic” environment at 1 to 5% O2 in both embryonic and adult brains. The results showed that hypoxia could promote the growth of NSCs and maintain its survival in vitro. In vivo studies also showed that ischemia/hypoxia increased the number of endogenous NSCs in the subventricular zone and dentate gyrus. In addition, hypoxia could influence the differentiation of NSCs. More neurons, especially more doparminergic neurons, were produced under hypoxic condition. The effects of hypoxia on the other kind of stem cell were briefly introduced as additional evidence. The mechanism of these responses might be primarily involved in the hypoxic inducible factor-1 (HIF-1) signal pathway. The present review summarizes recent works on the role of hypoxia in the proliferation and differentiation of NSCs both in vitro and in vivo, and the mechanism involved in HIF-1 signaling pathway behind this response was also discussed.  相似文献   
1000.
Microenvironmental factors affect different aspects of tumor cell biology, including cell survival, invasion, and metastasis. Here, we report that hepatocyte growth factor and hypoxia may contribute to breast carcinoma cell invasiveness by inducing the chemokine receptor CXCR4. Hepatocyte growth factor enhanced CXCR4 mRNA and protein expression exclusively in MCF-7 (low invasive) carcinoma cells, while in response to hypoxia, CXCR4 induction was observed in both MCF-7 and MDA-MB 231 (highly invasive) carcinoma cells. The receptor induction had a functional role in cancer cells, as demonstrated by the fact that hepatocyte growth factor pretreatment promoted MCF-7 cell migration toward the CXCR4-specific ligand CXCL12. Extracellular signal-regulated protein kinase 1/2 (ERK1/2) and phosphoinositide-3-kinase (PI3K) transduction pathways seemed to be differently implicated in the early induction of CXCR4 by hepatocyte growth factor or hypoxia in the two breast carcinoma cells examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号