首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1398篇
  免费   49篇
  国内免费   7篇
  2024年   1篇
  2023年   7篇
  2022年   17篇
  2021年   28篇
  2020年   32篇
  2019年   24篇
  2018年   30篇
  2017年   36篇
  2016年   24篇
  2015年   41篇
  2014年   91篇
  2013年   75篇
  2012年   66篇
  2011年   122篇
  2010年   63篇
  2009年   85篇
  2008年   88篇
  2007年   85篇
  2006年   86篇
  2005年   63篇
  2004年   57篇
  2003年   31篇
  2002年   24篇
  2001年   14篇
  2000年   14篇
  1999年   22篇
  1998年   22篇
  1997年   18篇
  1996年   12篇
  1995年   22篇
  1994年   16篇
  1993年   15篇
  1992年   18篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   8篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   8篇
  1983年   5篇
  1982年   9篇
  1981年   8篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1454条查询结果,搜索用时 31 毫秒
141.
目的应用缺氧动物模型比较纯氧环境(pure oxygen environment,POE,100%氧)与空气环境(roomair environment,RAE,21%氧)复苏对新生大鼠缺氧性大脑皮质神经元超微结构的影响。方法7日龄20只SD(Sprague Dawley)乳鼠建立缺氧2.5 h模型后,分为纯氧环境组(POE)和空气环境组(RAE),每组再根据复氧后时间点分为2个亚组,即24 h组和72 h组,每亚组5只。按时间点取各组乳鼠大脑半球右侧额顶皮质行电镜样品制备,透射电镜观察。结果复氧各组均可见神经元、神经毡和细胞间隙水肿。RAE 24 h组神经元核膜结构不清,细胞器减少,线粒体肿胀、空泡化、嵴断裂;粗面内质网扩张,常呈空泡状,核糖体减少;高尔基复合体囊泡扩张;溶酶体较多。RAE 72 h组细胞器改变同前,但类似凋亡的细胞核较多,坏死细胞亦较其他组多见。POE 24 h组病变较RAE 24 h组轻。POE 72 h组细胞内线粒体及粗面内质网较丰富,病变亦比RAE 72 h组轻。结论POE复苏较RAE复苏可更能缓解缺氧致神经元超微结构的损伤、减少细胞凋亡及减轻脑水肿。提示,纯氧环境对缺氧复苏后大脑皮质神经元有一定的保护作用,并表明本动物模型适合缺氧新生大鼠大脑皮质神经元研究。  相似文献   
142.
段云  张方信 《中国微生态学杂志》2010,22(4):382-384,F0003
为了便于进一步认识和深入研究高原环境与机体肠道微环境间的关系,本文就高原环境的特点,肠道微环境的病理学改变,分类,治疗和预后等相关研究做一简要综述。  相似文献   
143.
Hypoxic pulmonary vasoconstriction (HPV) is a physiological response to a decrease in airway O2 tension, but the underlying mechanism is incompletely understood. We studied the contribution of glucose-6-phosphate dehydrogenase (Glc-6-PD), an important regulator of NADPH redox and production of reactive oxygen species, to the development of HPV. We found that hypoxia (95% N2, 5% CO2) increased contraction of bovine pulmonary artery (PA) precontracted with KCl or serotonin. Depletion of extracellular glucose reduced NADPH, NADH, and HPV, substantiating the idea that glucose metabolism and Glc-6-PD play roles in the response of PA to hypoxia. Our data also show that inhibition of glycolysis and mitochondrial respiration (indicated by an increase in NAD+ and decrease in the ATP-to-ADP ratio) by hypoxia, or by inhibitors of pyruvate dehydrogenase or electron transport chain complexes I or III, increased generation of reactive oxygen species, which in turn activated Glc-6-PD. Inhibition of Glc-6-PD decreased Ca2+ sensitivity to the myofilaments and diminished Ca2+-independent and -dependent myosin light chain phosphorylation otherwise increased by hypoxia. Silencing Glc-6-PD expression in PA using a targeted small interfering RNA abolished HPV and decreased extracellular Ca2+-dependent PA contraction increased by hypoxia. Similarly, Glc-6-PD expression and activity were significantly reduced in lungs from Glc-6-PDmut(−/−) mice, and there was a corresponding reduction in HPV. Finally, regression analysis relating Glc-6-PD activity and the NADPH-to-NADP+ ratio to the HPV response clearly indicated a positive linear relationship between Glc-6-PD activity and HPV. Based on these findings, we propose that Glc-6-PD and NADPH redox are crucially involved in the mechanism of HPV and, in turn, may play a key role in increasing pulmonary arterial pressure, which is involved in the development of pulmonary hypertension.  相似文献   
144.
145.
In Drosophila melanogaster and other insects, increases in atmospheric oxygen partial pressure (aPO2) tend to increase adult body size and decrease tracheal diameters and tracheolar proliferation. If changes in tracheal morphology allow for functional compensation for aPO2, we would predict that higher aPO2 would be associated with higher critical PO2 values (CritPO2) and lower maximal tracheal conductances (Gmax). We measured CritPO2 and Gmax for adult and larval vinegar flies reared for 7-9 generations in 10, 21 or 40 kPa O2. The CritPO2, CO2 emission rates and Gmax values were generally independent of the rearing PO2 these flies had experienced, suggesting that minimal functional changes in tracheal capacities occurred in response to rearing PO2. Larvae were able to continue activity during 20 min of anoxia. The lack of multigenerational rearing PO2 effects on tracheal function suggests that the functional compensation at the whole-body level due to tracheal morphological changes in response to aPO2 may be minimal; alternatively the benefits of such compensation may occur in specific tissues or during processes not assessed by these methods. In larvae, the CritPO2 and the capacity for movement in anoxia suggest adaptations for life in hypoxic organic matter.  相似文献   
146.
Transient receptor potential melastatin 7 (TRPM7) channels are novel Ca2+-permeable non-selective cation channels ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in cellular Mg2+ homeostasis, diseases caused by abnormal magnesium absorption, and in Ca2+-mediated neuronal injury under ischemic conditions. Here we show strong evidence suggesting that TRPM7 channels also play an important role in cellular Zn2+ homeostasis and in Zn2+-mediated neuronal injury. Using a combination of fluorescent Zn2+ imaging, small interfering RNA, pharmacological analysis, and cell injury assays, we show that activation of TRPM7 channels augmented Zn2+-induced injury of cultured mouse cortical neurons. The Zn2+-mediated neurotoxicity was inhibited by nonspecific TRPM7 blockers Gd3+ or 2-aminoethoxydiphenyl borate, and by knockdown of TRPM7 channels with small interfering RNA. In addition, Zn2+-mediated neuronal injury under oxygen-glucose deprivation conditions was also diminished by silencing TRPM7. Furthermore, we show that overexpression of TRPM7 channels in HEK293 cells increased intracellular Zn2+ accumulation and Zn2+-induced cell injury, while silencing TRPM7 by small interfering RNA attenuated the Zn2+-mediated cell toxicity. Thus, TRPM7 channels may represent a novel target for neurological disorders where Zn2+ toxicity plays an important role.  相似文献   
147.
miRNAs have been shown to be essential for normal cartilage development in the mouse. However, the role of specific miRNAs in cartilage function is unknown. Using rarely available healthy human chondrocytes (obtained from 8 to 50 year old patients), we detected a most highly abundant primary miRNA H19, whose expression was heavily dependent on cartilage master regulator SOX9. Across a range of murine tissues, expression of both H19- and H19-derived miR-675 mirrored that of cartilage-specific SOX9. miR-675 was shown to up-regulate the essential cartilage matrix component COL2A1, and overexpression of miR-675 rescued COL2A1 levels in H19- or SOX9-depleted cells. We thus provide evidence that SOX9 positively regulates COL2A1 in human articular chondrocytes via a previously unreported miR-675-dependent mechanism. This represents a novel pathway regulating cartilage matrix production and identifies miR-675 as a promising new target for cartilage repair.  相似文献   
148.
Cells are responding to hypoxia via prolyl-4-hydroxylase domain (PHD) enzymes, which are responsible for oxygen-dependent hydroxylation of the hypoxia-inducible factor (HIF)-1α subunit. To gain further insight into PHD function, we generated knockdown cell models for the PHD2 isoform, which is the main isoform regulating HIF-1α hydroxylation and thus stability in normoxia. Induction of a PHD2 knockdown in tetracycline-inducible HeLa PHD2 knockdown cells resulted in increased F-actin formation as detected by phalloidin staining. A similar effect could be observed in the stably transfected PHD2 knockdown cell clones 1B6 and 3B7. F-actin is at least in part responsible for shaping cell morphology as well as regulating cell migration. Cell migration was impaired significantly as a consequence of PHD2 knockdown in a scratch assay. Mechanistically, PHD2 knockdown resulted in activation of the RhoA (Ras homolog gene family member A)/Rho-associated kinase pathway with subsequent phosphorylation of cofilin. Because cofilin phosphorylation impairs its actin-severing function, this may explain the F-actin phenotype, thereby providing a functional link between PHD2-dependent signaling and cell motility.  相似文献   
149.
Upon exposure to adipogenesis-inducing hormones, confluent 3T3-L1 preadipocytes express C/EBPβ (CCAAT/enhancer binding protein β). Early induced C/EBPβ is inactive but, after a lag period, acquires its DNA-binding capability by sequential phosphorylation. During this period, preadipocytes pass the G1/S checkpoint synchronously. Thr188 of C/EBPβ is phosphorylated initially to prime the factor for subsequent phosphorylation at Ser184 or Thr179 by GSK3β, which translocates into the nuclei during the G1/S transition. Many events take place during the G1/S transition, including reduction in p27Kip1 protein levels, retinoblastoma (Rb) phosphorylation, GSK3β nuclear translocation, and C/EBPβ binding to target promoters. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) is stabilized, thus maintaining expression of p27Kip1, which inhibits Rb phosphorylation. Even under normoxic conditions, constitutive expression of p27Kip1 blocks the nuclear translocation of GSK3β and DNA binding capability of C/EBPβ. Hypoxia also blocks nuclear translocation of GSK3β and DNA binding capability of C/EBPβ in HIF-1α knockdown 3T3-L1 cells that fail to induce p27Kip1. Nonetheless, under hypoxia, these cells can block Rb phosphorylation and the G1/S transition. Altogether, these findings suggest that hypoxia prevents the nuclear translocation of GSK3β and the DNA binding capability of C/EBPβ by blocking the G1/S transition through HIF-1α-dependent induction of p27Kip1 and an HIF-1α/p27-independent mechanism.  相似文献   
150.
Exposure of the CNS to hypoxia is associated with cell death. Our aim was to establish a temporal correlation between cellular and molecular alterations induced by an acute hypoxia evaluated at different post-hypoxia (p-h) times and at two stages of chick optic lobe development: embryonic days (ED) 12 and 18. TUNEL assays at ED12 disclosed a significant increase (300%) in pyknotic cells at 6 h p-h, while at ED18 no morphological changes were observed in hypoxic versus controls. At ED12 there was a significant increase (48%) in Bcl-2 levels at the end of the hypoxic treatment, followed by a significant increase of active caspase-9 (49%) and active caspase-3 (58%) at 30 and 60 min p-h, respectively, while at ED18 no significant changes were observed. These findings indicate that prenatal hypoxia produces an equilibrated imbalance in both pro- and anti-apoptotic proteins that culminates in a process of cell death, present at earlier stages of development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号