首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1401篇
  免费   49篇
  国内免费   7篇
  2024年   1篇
  2023年   7篇
  2022年   20篇
  2021年   28篇
  2020年   32篇
  2019年   24篇
  2018年   30篇
  2017年   36篇
  2016年   24篇
  2015年   41篇
  2014年   91篇
  2013年   75篇
  2012年   66篇
  2011年   122篇
  2010年   63篇
  2009年   85篇
  2008年   88篇
  2007年   85篇
  2006年   86篇
  2005年   63篇
  2004年   57篇
  2003年   31篇
  2002年   24篇
  2001年   14篇
  2000年   14篇
  1999年   22篇
  1998年   22篇
  1997年   18篇
  1996年   12篇
  1995年   22篇
  1994年   16篇
  1993年   15篇
  1992年   18篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   8篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   8篇
  1983年   5篇
  1982年   9篇
  1981年   8篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1457条查询结果,搜索用时 15 毫秒
11.
Summary The interaction of adrenaline and adenosine was examined in cardiac tissue of the flounderPlatichthys flesus.When applied alone both agents increased contractility in both auricular and ventricular myocardial strips. This positive inotropic effect was associated with a small depolarization in the tissues examined by the sucrose gap technique. Simultaneous application of adrenaline and adenosine gave an inhibition of the control responses seen with either agent alone in both auricle and ventricle.Radiocalcium flux studies on ventricular tissue showed that influx was increased by adrenaline or adenosine alone above control values, but when applied together radiocalcium influx was reduced. Radiocalcium efflux from cardiac microsomes was stimulated by challenge with adrenaline or adenosine alone. This stimulation was not seen following simultaneous challenge by both agents.The effect of adrenaline on responses of hypoxic flounder hearts was less than that seen in normoxic hearts. This situation was reversed by pretreatment with the purine receptor blocker caffeine. Caffeine pretreatment also reduced the positive inotropic effect seen in normoxic hearts challenged with adenosine.TLC studies gave strong evidence that hearts perfused with hypoxic salines produced both adenosine and adrenaline.The results are discussed as evidence for a mechanism of heart regulation which the flounder may use as a defence against severe acute hypoxic stress.  相似文献   
12.
Synopsis The effects of constant and diurnally fluctuating levels of dissolved oxygen on the growth of young-of-the-year winter flounder,Pseudopleuronectes americanus, were examined under controlled laboratory conditions. Fish were exposed for either 10 or 11 weeks to constant levels of 6.7 (high) and 2.2 (low) mg l–1, and a diurnal fluctuation, ranging from 2.5 to 6.4 mg 02l–1. Growth rates, calculated for both standard length and weight, for fish exposed to low and diurnally fluctuating levels were significantly reduced (p < 0.001) as compared to those for fish exposed to the high level. Growth rates of fish exposed to the high level were over twice those of fish held under low oxygen conditions. Under fluctuating conditions, fish grew at intermediate rates. Following these exposures, all fish were subsequently held at 7.2 mg Oz l–1 for five weeks. Growth rates increased over two and a half times for fish previously exposed to the low oxygen level and were significantly (p < 0.001) higher than for the other two groups.  相似文献   
13.
Summary An extracorporeal circulation of rainbow trout (Oncorhynchus mykiss) was utilized to continuously monitor the rapid and progressive effects of endogenous or exogenous catecholamines on blood respiratory/acid-base status, and to provide in vivo evidence for adrenergic retention of carbon dioxide (CO2) in fish blood (cf. Wood and Perry 1985). Exposure of fish to severe aquatic hypoxia (final P wO2=40–60 torr; reached within 10–20 min) elicited an initial respiratory alkalosis resulting from hypoxia-induced hyperventilation. However, at a critical arterial oxygen tension (P aO2) between 15 and 25 torr, fish became agitated for approximately 5 s and a marked (0.2–0.4 pH unit) but transient arterial blood acidosis ensued. This response is characteristic of abrupt catecholamine mobilization into the circulation and subsequent adrenergic activation of red blood cell (RBC) Na+/H+ exchange (Fievet et al. 1987). Within approximately 1–2 min after the activation of RBC Na+/H+ exchange by endogenous catecholamines, there was a significant rise in arterial PCO2 (P aCO2) whereas arterial PO2 was unaltered; the elevation of P aCO2 could not be explained by changes in gill ventilation. Pre-treatment of fish with the -adrenoceptor antagonist phentolamine did not prevent the apparent catecholamine-mediated increase of P aCO2. Conversely, pre-treatment with the -adrenoceptor antagonist sotalol abolished both the activation of the RBC Na+/H+ antiporter and the associated rise in P aCO2, suggesting a causal relationship between the stimulation of RBC Na+/H+ exchange and the elevation of P aCO2. To more clearly establish that elevation of plasma catecholamine levels during severe hypoxia was indeed responsible for causing the elevation of P aCO2, fish were exposed to moderate hypoxia (final P wO2=60–80 torr) and then injected intraarterially with a bolus of adrenaline to elicit an estimated circulating level of 400 nmol·l-1 immediately after the injection. This protocol activated RBC Na+/H+ exchange as indicated by abrupt changes in arterial pH (pHa). In all fish examined, P aCO2 increased after injection of exogenous adrenaline. The effects on P aO2 were inconsistent, although a reduction in this variable was the most frequent response. Gill ventilation frequency and amplitude were unaffected by exogenous adrenaline. Therefore, it is unlikely that ventilatory changes contributed to the consistently observed rise in P aCO2. Pretreatment of fish with sotalol did not alter the ventilatory response to adrenaline injection but did prevent the stimulation of RBC Na+/H+ exchange and the accompanying increases and decreases in P aCO2 and P aO2, respectively. These results suggest that adrenergic elevation of P aCO2, in addition to the frequently observed reduction of P aO2 are linked to activation of RBC Na+/H+ exchange. The physiological significance and the potential mechanisms underlying the changes in blood respiratory status after addition of endogenous or exogenous catecholamines to the circulation of hypoxic rainbow trout are discussed.Abbreviations P aCO2 arterial carbon dioxide tension - P aO2 arterial oxygen tension - P da dorsal aortic pressure - pHa arterial pH - P wO2 water oxygen tension - RBC red blood cell - V f breathing frequency  相似文献   
14.
The effects of hypoxia on metabolism of 5-hydroxytryptamine (5-HT or serotonin) and 3,4-dihydroxyphenylethylamine (DA or dopamine) were compared with those on open-field activity in male CD-1 mice. Chemical hypoxia was induced with NaNO2. Hypoxia did not alter striatal concentrations of DA, 5HT, Trp, Tyr, 5-hydroxyindoleacetic acid, or homovanillic acid. However, NaNO2 (75 mg/kg) reduced the rates of conversion of [3H]Tyr to [3H]DA (-41%) and [3H]Trp to [3H]5-HT (-39%). Hypoxia also reduced dihydroxyphenylacetic acid (DOPAC) levels (-27%) and DOPAC/DA ratios (-20%). Open-field behavior, as measured in an automated activity monitor, decreased in a dose-dependent fashion with 75-150 mg/kg of NaNO2 (-35 to -90%). Comparison with previous studies suggests that the syntheses of dopamine, serotonin, and the amino acids are equally vulnerable to hypoxic insults but may be less sensitive than the synthesis of acetylcholine.  相似文献   
15.
Arachidonic acid is transiently accumulated in the brain as a result of a variety of pathological conditions. The synthesis and release of some of its metabolites, namely, prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) from cortical slices of mice were studied following exposure to 6 min of hypoxia (7% O2), 45 s of anoxia, and 5 min-4 h of reoxygenation following anoxia. Hypoxia induced a slight increase in the rate of TXB2 release and a slight decrease in the rate of PGE2 release, whereas 6-keto-PGF1 alpha was unaffected. Anoxia (45 s) followed by reoxygenation induced a transient increase in the release of PGE2 and of 6-keto-PGF1 alpha with a return to the normal rate at 30 min and 2 h of recovery, respectively. However, the rate of TXB2 synthesis and release reached its peak (twofold increase) after 1 h and remained significantly higher than the control rate even after 4 h of normal air breathing. Our results demonstrate that hypoxia and anoxia, even of short duration, selectively trigger the activity of thromboxane synthetase and that this elevated rate of synthesis and release persists long after normal oxygen supply is restored. We suggest that enhanced thromboxane synthesis, with normal prostacyclin levels, might have a role in the pathophysiology of ischemic cell damage.  相似文献   
16.
Forty-seven highland natives were given maximal exercise tests on a treadmill ergometer at 3,600 m. The subjects were grouped into four subsamples on the basis of ethnicity (European vs. Aymara) and age (young vs. old adolescent). Two-way ANOVA indicated that VO2max adjusted for body size did not differ significantly between ethnic groups but was significantly larger in older than younger boys within each ethnic group (p less than .05). This finding does not support the hypothesis that Amerindian highland natives have adapted genetically to hypoxia but is consistent with the hypothesis that the relatively high VO2max's of highlanders are acquired by developmental adaptation. Several measures of ventilation and oxygen transport capacity differed significantly between ethnic groups, suggesting that growing European and Aymara boys may respond somewhat differently to the stress of high-altitude hypoxia. However, despite these differences, VO2max, an integrated measure of the overall functional capacity of the oxygen transport system, did not differ significantly between ethnic groups, suggesting that both groups are equally capable of meeting the body's oxygen requirements during maximal exercise at high altitude.  相似文献   
17.
Levels of ascorbic acid (AA) in the plasma, brain, and adrenal gland of rats were determined after 15 min of hypoxia (PaO2 less than 25 mm Hg) and following asphyxia. In rabbits, AA plasma levels were followed up to 75 min of reoxygenation following 15 min of hypoxia of the same severity. A significant increase (approximately 70%) in AA levels was found in plasma of rats and rabbits after hypoxia and asphyxia. This increase was found to be transient, with a return to normal levels within 1 h after resumption of normal oxygenation. Pretreatment with dexamethasone reduced the increase in AA level in both rabbits and rats. Adrenalectomy in rats, performed 24 h before the experiment, abolished the response to hypoxia. Ascorbate levels in the cerebral cortex, hypothalamus, and adrenal gland of awake rats subjected to hypoxia or asphyxia were found to be the same as in normoxic rats. Our results suggest that the observed changes in plasma AA levels are probably mediated through adrenocorticotropic hormone and that the adrenal gland is the major source of ascorbate efflux into the circulation during oxygen deprivation.  相似文献   
18.
A decline in the calcium-dependent release of neurotransmitters appears to underlie the decreased neuronal function that accompanies reduced oxygen tensions (hypoxia). To determine if alterations in calcium uptake are primary to these changes, synaptosomal calcium uptake was measured in the presence of 100%, 2.5%, or 0% oxygen. Calcium uptake declined 60.2 +/- 0.1 and 82.4 +/- 2.5% with 2.5% and 0% when compared with 100% oxygen, respectively. 3,4-Diaminopyridine stimulated calcium uptake by synaptosomes when they were incubated in low-potassium media. It also diminished the hypoxic-induced decline in calcium uptake to 30.6 +/- 3.1 and 33.5 +/- 3.1% with 2.5% and 0% oxygen, respectively. External binding to the synaptosomal plasma membrane declined to 29.2 +/- 0.3 or 11.8 +/- 0.9% when the oxygen tension was reduced to 2.5% or 0% oxygen. 3,4-Diaminopyridine increased this superficial binding from 111.7 +/- 0.3 to 86.5 +/- 0.9 or 23.4 +/- 0.9% with 100%, 2.5%, or 0% oxygen when compared with 100% oxygen without 3,4-diaminopyridine, respectively. Thus, the decline in neuronal processing that accompanies acute hypoxia may be due to altered calcium homeostasis, which diminishes neurotransmitter release.  相似文献   
19.
The subcutaneous injection of isoprenaline, salbutamol, histamine, and adrenaline to rats, which were subsequently killed by microwave irradiation, resulted in a rapid increase in the cyclic AMP content of the carotid body. On the other hand, noradrenaline, dopamine, adenosine, and 5-hydroxytryptamine, at doses at least 100 times greater than that of isoprenaline, did not significantly alter the cyclic nucleotide content in vivo. The response to isoprenaline was dose related, with an ED50 of 15 micrograms X kg-1, and reached a peak level 1-1.5 min after injection. Incubation of intact carotid bodies with isoprenaline (10(-5) M) in vitro also resulted in a 10-fold increase in cyclic AMP content. The in vivo response to isoprenaline could be blocked stereo-selectively by propranolol, and ICI 118.551, a beta 2-selective antagonist, blocks the isoprenaline-elicited increase in cyclic AMP completely at a dose of 30 micrograms X kg-1; whereas betaxolol, a beta 1-selective antagonist, was ineffective, even at a dose of 300 micrograms X kg-1. Hypoxia (5% oxygen in 95% N2) did not result in a significant increase in the cyclic AMP content, nor did it significantly alter the isoprenaline-stimulated increase in the cyclic AMP content of the rat carotid body. These results suggest that some catecholamines may stimulate cyclic AMP formation by interacting with a beta 2-adrenoceptor in the rat carotid body.  相似文献   
20.
We examined the effects of in vitro anoxia and in vivo hypoxia (8% O2/92% N2) on norepinephrine (NE)- and carbachol-stimulated phosphoinositide (PI) turnover in rat brain slices. The formation of 3H-labeled polyPI in cortical slices was impaired by in vitro anoxia and fully restored by reoxygenation. Accumulation of 3H-labeled myo-inositol phosphates (3H-IPs) stimulated by 10(-5) M NE was significantly reduced by anoxia (control at 60 min, 1,217 +/- 86 cpm/mg of protein; anoxia for 60 min, 651 +/- 82 cpm/mg; mean +/- SEM; n = 5; p less than 0.01), and reoxygenation following anoxia resulted in overshooting of the accumulation (control at 120 min, 1,302 +/- 70 cpm/mg; anoxia for 50 min plus oxygenation for 70 min, 1,790 +/- 126 cpm/mg; n = 5; p less than 0.01). The underlying mechanisms for the two phenomena--the decrease caused by anoxia and the overshooting caused by reoxygenation following anoxia--seemed to be completely different because of the following observations. (a) Although the suppression of NE-stimulated accumulation at low O2 tensions was also observed in Ca2+-free medium, the overshooting in response to reoxygenation was not. (b) Carbachol-stimulated accumulation was significantly reduced by anoxia and was restored by reoxygenation only to control levels. Thus, the postanoxic overshooting in accumulation of 3H-IPs seems to be a specific response to NE. (c) The decrease observed at low O2 tensions was due to a decrease in Emax value, whereas the postanoxic overshooting was due to a decrease in EC50 value.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号