首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   34篇
  国内免费   6篇
  2024年   2篇
  2023年   7篇
  2022年   8篇
  2021年   8篇
  2020年   8篇
  2019年   11篇
  2018年   12篇
  2017年   18篇
  2016年   9篇
  2015年   13篇
  2014年   23篇
  2013年   32篇
  2012年   11篇
  2011年   22篇
  2010年   9篇
  2009年   22篇
  2008年   21篇
  2007年   17篇
  2006年   18篇
  2005年   16篇
  2004年   16篇
  2003年   15篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有387条查询结果,搜索用时 15 毫秒
41.
Basak A  Lotfipour F 《FEBS letters》2005,579(21):4813-4821
A peptide was designed from reactive site loop structure of alpha1 Antitrypsin Portland known as alpha1 PDX as a novel mini-PDX inhibitor of furin. The sequence was derived from (367-394) that contains the crucial furin cleavage motif RIPR382. A P3 mutant replacing Ile380 by Leu was prepared as a first model peptide. A Cys residue was inserted at each terminal of the peptide for purpose of cyclisation which was accomplished by air or iodine-induced oxidation. This mini-PDX peptide both cyclic and acyclic form inhibited in vitro furin activity (IC50 in nM) when measured against either substrates Boc-RVRRdown double arrow MCA or QVEGF-C [Abz-QVHSIIRRdown double arrow SLP-Y(NO2)-A-CONH2, Abz=2-amino benzoic acid and Y(NO2)=3-nitro tyrosine], latter being derived from vascular endothelial growth factor-C (VEGF-C) processing site. The geometrically constrained structure mimicking PDX reactive loop is crucial for enzyme inhibition. Our study further revealed that both mini-PDX peptides inactivate furin in a slow tight binding manner, with disulfide-bridged cyclic form being slightly more potent. Unlike PDX, these peptides inhibit furin via a different mechanistic pathway. The study provides an alternate strategy for development of efficient peptide-based inhibitors of Proprotein Convertases including furin.  相似文献   
42.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels and cyclic nucleotide-gated (CNG) channels are activated by the direct binding of cyclic nucleotides. The intracellular COOH-terminal regions exhibit high sequence similarity in all HCN and CNG channels. This region contains the cyclic nucleotide-binding domain (CNBD) and the C-linker region, which connects the CNBD to the pore. Recently, the structure of the HCN2 COOH-terminal region was solved and shown to contain intersubunit interactions between C-linker regions. To explore the role of these intersubunit interactions in intact channels, we studied two salt bridges in the C-linker region: an intersubunit interaction between C-linkers of neighboring subunits, and an intrasubunit interaction between the C-linker and its CNBD. We show that breaking these salt bridges in both HCN2 and CNGA1 channels through mutation causes an increase in the favorability of channel opening. The wild-type behavior of both HCN2 and CNGA1 channels is rescued by switching the position of the positive and negative residues, thus restoring the salt bridges. These results suggest that the salt bridges seen in the HCN2 COOH-terminal crystal structure are also present in the intact HCN2 channel. Furthermore, the similar effects of the mutations on HCN2 and CNGA1 channels suggest that these salt bridge interactions are also present in the intact CNGA1 channel. As disrupting the interactions leads to channels with more favorable opening transitions, the salt bridges appear to stabilize a closed conformation in both the HCN2 and CNGA1 channels. These results suggest that the HCN2 COOH-terminal crystal structure contains the C-linker regions in the resting configuration even though the CNBD is ligand bound, and channel opening involves a rearrangement of the C-linkers and, thus, disruption of the salt bridges. Discovering that one portion of the COOH terminus, the CNBD, can be in the activated configuration while the other portion, the C-linker, is not activated has lead us to suggest a novel modular gating scheme for HCN and CNG channels.  相似文献   
43.
木聚糖酶基因研究进展   总被引:4,自引:0,他引:4  
半纤维素分解微生物在自然界碳素循环中起着重要作用,半纤维素是植物多糖的重要成分之一。木聚糖则是半纤维素的主要成分。木聚糖酶(EC3.2.1.8)可催化木聚糖的水解,在各种各样的生物体里都发现有木聚糖酶,如细菌、放线菌、真菌。在过去几十年里,有超过100个木聚糖酶基因被克隆进同源或异源宿主中,其目的是为了超表达木聚糖酶和改变它们的特性以适应商业应用。木聚糖酶的应用极其广泛,可用于生物转化、造纸、食品、饲料、能源、纺织等行业。尤其是迫切的环境问题将进一步促进木聚糖酶研究的开展。  相似文献   
44.
The role of the 17 disulfide (S-S) bridges in preserving the native conformation of human serum albumin (HSA) is investigated by performing classical molecular dynamics (MD) simulations on protein structures with intact and, respectively, reduced S-S bridges. The thermal unfolding simulations predict a clear destabilization of the protein secondary structure upon reduction of the S-S bridges as well as a significant distortion of the tertiary structure that is revealed by the changes in the protein native contacts fraction. The effect of the S-S bridges reduction on the protein compactness was tested by calculating Gibbs free energy profiles with respect to the protein gyration radius. The theoretical results obtained using the OPLS-AA and the AMBER ff03 force fields are in agreement with the available experimental data. Beyond the validation of the simulation method, the results here reported provide new insights into the mechanism of the protein reductive/oxidative unfolding/folding processes. It is predicted that in the native conformation of the protein, the thiol (-SH) groups belonging to the same reduced S-S bridge are located in potential wells that maintain them in contact. The -SH pairs can be dispatched by specific conformational transitions of the peptide chain located in the neighborhood of the cysteine residues.  相似文献   
45.
Lipase B from Candida antarctica (CalB) is a versatile biocatalyst for various bioconversions. In this study, the thermostability of CalB was improved through the introduction of a new disulfide bridge. Analysis of the B‐factors of residue pairs in CalB wild type (CalB‐WT) followed by simple flexibility analysis of residues in CalB‐WT and its designated mutants using FIRST server were newly proposed to enhance the selective power of two computational tools (MODIP and DbD v1.20) to predict the possible disulfide bonds in proteins for the enhancement of thermostability. Five residue pairs (A162‐K308, N169‐F304, Q156L163, S50‐A273, and S239C‐D252C) were chosen and the respective amino acid residues were mutated to cysteine. In the results, CalB A162C‐K308C showed greatly improved thermostability while maintaining its catalytic efficiency compared to that of CalB‐WT. Remarkably, the temperature at which 50% of its activity remained after 60‐min incubation (T) of CalB A162C_K308C was increased by 8.5°C compared to that of CalB‐WT (55 and 46.5°C, respectively). Additionally, the half‐life at 50°C of CalB A162C‐K308C was 4.5‐fold higher than that of CalB‐WT (220 and 49 min, respectively). The improvement of thermostability of CalB A162C‐K308C was elucidated at the molecular level by molecular dynamics (MD) simulation. Biotechnol. Bioeng. 2012; 109:867–876. © 2011 Wiley Periodicals, Inc.  相似文献   
46.
Arginine 352 (R352) in the sixth transmembrane domain of the cystic fibrosis transmembrane conductance regulator (CFTR) previously was reported to form an anion/cation selectivity filter and to provide positive charge in the intracellular vestibule. However, mutations at this site have nonspecific effects, such as inducing susceptibility of endogenous cysteines to chemical modification. We hypothesized that R352 stabilizes channel structure and that charge-destroying mutations at this site disrupt pore architecture, with multiple consequences. We tested the effects of mutations at R352 on conductance, anion selectivity and block by the sulfonylurea drug glipizide, using recordings of wild-type and mutant channels. Charge-altering mutations at R352 destabilized the open state and altered both selectivity and block. In contrast, R352K-CFTR was similar to wild-type. Full conductance state amplitude was similar to that of wild-type CFTR in all mutants except R352E, suggesting that R352 does not itself form an anion coordination site. In an attempt to identify an acidic residue that may interact with R352, we found that permeation properties were similarly affected by charge-reversing mutations at D993. Wild-type-like properties were rescued in R352E/D993R-CFTR, suggesting that R352 and D993 in the wild-type channel may interact to stabilize pore architecture. Finally, R352A-CFTR was sensitive to modification by externally applied MTSEA+, while wild-type and R352E/D993R-CFTR were not. These data suggest that R352 plays an important structural role in CFTR, perhaps reflecting its involvement in forming a salt bridge with residue D993.  相似文献   
47.
Nicotinamide adenine dinucleotide (NAD) derives from quinolinic acid which is synthesized in Escherichia coli from l-aspartate and dihydroxyacetone phosphate through the concerted action of l-aspartate oxidase and the [4Fe-4S] quinolinate synthase (NadA). Here, we addressed the question of the identity of the cluster ligands. We performed in vivo complementation experiments as well as enzymatic, spectroscopic and structural in vitro studies using wild-type vs. Cys-to-Ala mutated NadA proteins. These studies reveal that only three cysteine residues, the conserved Cys113, Cys200 and Cys297, are ligands of the cluster. This result is in contrast to the previous proposal that pointed the three cysteines of the C(291)XXC(294)XXC(297) motif. Interestingly, we demonstrated that Cys291 and Cys294 form a disulfide bridge and are important for activity.  相似文献   
48.
Wong SE  Baron R  McCammon JA 《Biopolymers》2008,89(11):916-920
Protein-protein association involves many interface interactions, but they do not contribute equally. Ala scanning experiments reveal that only a few mutations significantly lower binding affinity. These key residues, which appear to drive protein-protein association, are called hot-spot residues. Molecular dynamics simulations of the Colicin E9/Im9 complex show Im9 Glu41 and Im9 Ser50, both hot-spots, bind via different mechanisms. The results suggest that Im9 Ser50 restricts Glu41 in a conformation auspicious for salt-bridge formation across the interface. This type of model may be helpful in engineering hot-spot clusters at protein-protein interfaces and, consequently, the design of specificity. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 916-920, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   
49.
A novel polymeric, asymmetric chloro-bridged copper chain with general formula [μ-Cl-CuCl(dipm]n (in which dipm = bis(pyrimidin-2-yl)amine) has been synthesized and characterised by X-ray crystallography and infrared spectroscopy. The chains are organized in 2D sheets by intermolecular double H bonds between pairs of dipm molecules. In addition, EPR and magnetic measurements have been performed, and these have been related to the dinuclear structural details.The geometry around the copper(II) ion is distorted square pyramidal with the basal plane formed by the two nitrogen atoms of the dipm ligand and two chloride atoms, one of which is bridging. The Cu-N distances are 2.0342(15) and 2.0125(15) Å and Cu-Cl distances are 2.2899(6) and 2.2658(6) Å. The apical position of Cu is occupied by a chloride atom of a neighbouring unit atom at a distance of 2.6520(6) Å, resulting in the polynuclear array in which one chloride anion and the copper ion forms a zig-zag chain. The magnetic interaction between the Cu-Cu atoms is weak antiferromagnetic with a singlet-triplet separation (J) of −3.2(1) cm−1.  相似文献   
50.
《Developmental cell》2023,58(6):474-488.e5
  1. Download : Download high-res image (194KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号