首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1801篇
  免费   141篇
  国内免费   350篇
  2024年   3篇
  2023年   31篇
  2022年   33篇
  2021年   57篇
  2020年   54篇
  2019年   72篇
  2018年   69篇
  2017年   47篇
  2016年   57篇
  2015年   75篇
  2014年   76篇
  2013年   108篇
  2012年   67篇
  2011年   89篇
  2010年   63篇
  2009年   102篇
  2008年   100篇
  2007年   97篇
  2006年   88篇
  2005年   82篇
  2004年   55篇
  2003年   74篇
  2002年   64篇
  2001年   60篇
  2000年   41篇
  1999年   44篇
  1998年   37篇
  1997年   36篇
  1996年   34篇
  1995年   35篇
  1994年   37篇
  1993年   30篇
  1992年   30篇
  1991年   35篇
  1990年   32篇
  1989年   26篇
  1988年   27篇
  1987年   32篇
  1986年   28篇
  1985年   32篇
  1984年   36篇
  1983年   12篇
  1982年   21篇
  1981年   16篇
  1980年   23篇
  1979年   6篇
  1978年   3篇
  1977年   6篇
  1974年   2篇
  1972年   3篇
排序方式: 共有2292条查询结果,搜索用时 15 毫秒
991.
曲长凤  宋金明  李宁 《生态学杂志》2014,25(12):3701-3712
水母旺发已成为一种新型海洋生态灾害,使海洋生态系统的结构和功能、海洋生态环境受到严重破坏.本文总结了水母旺发的可能诱因,重点探讨了水母旺发对海水生源要素、溶解氧、酸碱度以及生物群落的影响.结果表明: 水母旺发与其自身生理结构与生活史密切相关,其具有的身体结构简单、生长迅速、繁殖性强、世代间隔时间短及耐不良环境等特点,使其遇合适环境可迅速繁殖.水母旺发的主要直接诱因可能与海水温度变化有关,海水升温可导致水母食物增多,促进水母生殖,尤其对暖温性水母,更易引起水母聚集繁殖,形成旺发.富营养化、气候变化、过渡捕捞、生物入侵、栖息地改变也是水母旺发的重要影响因素.水母旺发可显著影响生源要素的形态和生物地球化学循环,水母排放NH4+和PO43-速率分别为59.1~91.5 μmol N·kg-1·h-1和1.1~1.8 μmol P·kg-1·h-1,可为浮游植物提供8%~10%和21.6%的N和P,释放溶解有机碳速率为1.0 μmol C·g-1·d-1.水母腐烂时总氮和总磷的释放速率可达4000 μmol N·kg-1·d-1和120 μmol P·kg-1·d-1,溶解有机碳的释放速率为30 μmol C·g-1·d-1;水母腐烂可影响水体的酸碱度与溶解氧含量,导致水体严重酸化与缺氧/无氧,pH降幅为1.3,平均耗氧量可达32.8 μmol·kg-1·h-1.水母旺发还可引起某些鱼类与浮游动物生物量的减少与重新分布,浮游微生物增加,间接导致浮游植物增加,引起海洋初级生产的异常.
  相似文献   
992.
993.
Cakile maritima (family: Brassicaceae) was collected from three provenances belonging to different bioclimatic stages (humid, semi arid and arid) in Tunisia to study their eco‐physiological and biochemical responses to salinity. Seedlings were cultivated on inert sand for 20 days under NaCl treatments (0, 100, 200, 400 mm NaCl). Plant response to salinity was provenance‐ and salt‐dependent. At 100 mm NaCl, growth parameters (leaf biomass, area, number per plant and relative growth rate) were improved in plants from Jerba (originating from arid bioclimatic stage) compared with the control, while growth was reduced in those from Tabarka (from humid area). High salt levels (400 mm NaCl) decreased the plant growth in the three provenances, but plants in Tabarka were the most salt sensitive. The relative salt tolerance of plants from Jerba and Bekalta provenances was associated with low levels of malondialdehyde as well as of electrolyte leakage and endoproteolytic activity. Salt reduced leaf hydration, the decrease in water content being dose‐dependent and more pronounced in Tabarka. Increase in salinity led to significant increase in leaf succulence and decrease in leaf water potential, especially in Jerba plants. The plants from the latter displayed the highest leaf levels of Na+ and Cl?, proline, soluble carbohydrates, soluble proteins, and polyphenols. Overall, the higher salt tolerance of plants from Jerba provenance, and to a lower extent of those from Bekalta, may be partly related to their better capacity for osmotic adjustment and to limit oxidative damage when salt‐challenged.  相似文献   
994.
The outermost surfaces of plants are covered with an epicuticular wax layer that provides a primary waterproof barrier and protection against different environmental stresses. Glossy 1 (GL1) is one of the reported genes controlling wax synthesis. This study analyzed GL1-homologous genes in Oryza sativa and characterized the key members of this family involved in wax synthesis and stress resistance. Sequence analysis revealed 11 homologous genes of GL1 in rice, designated OsGL1-1 to  OsGL1-11. OsGL1-1, -2 and -3 are closely related to GL1. OsGL1-4, -5, -6, and -7 are closely related to Arabidopsis CER1 that is involved in cuticular wax biosynthesis. OsGL1-8, -9, -10 and -11 are closely related to SUR2 encoding a putative sterol desaturase also involved in epicuticular wax biosynthesis. These genes showed variable expression levels in different tissues and organs of rice, and most of them were induced by abiotic stresses. Compared to the wild type, the OsGL1-2-over-expression rice exhibited more wax crystallization and a thicker epicuticular layer; while the mutant of this gene showed less wax crystallization and a thinner cuticular layer. Chlorophyll leaching experiment suggested that the cuticular permeability was decreased and increased in the over-expression lines and the mutant, respectively. Quantification analysis of wax composition by GC–MS revealed a significant reduction of total cuticular wax in the mutant and increase of total cuticular wax in the over-expression plants. Compared to the over-expression and wild type plants, the osgl1-2 mutant was more sensitive to drought stress at reproductive stage, suggesting an important role of this gene in drought resistance. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
995.
We compared the effects of salt-stresses (SS, 1: 1 molar ratio of NaCl to Na2SO4) and alkali-stresses (AS, 1: 1 molar ratio of NaHCO3 to Na2CO3) on the growth, photosynthesis, solute accumulation, and ion balance of barley seedlings, to elucidate the mechanism of AS (high-pH) damage to plants and the physiological adaptive mechanism of plants to AS. The effects of SS on the water content, root system activity, membrane permeability, and the content of photosynthetic pigments were much less than those of AS. However, AS damaged root function, photosynthetic pigments, and the membrane system, led to the severe reductions in water content, root system activity, content of photosynthetic pigments, and net photosynthetic rate, and a sharp increase in electrolyte leakage rate. Moreover, with salinity higher than 60 mM, Na+ content increased slowly under SS and sharply under AS. This indicates that high-pH caused by AS might interfere with control of Na+ uptake in roots and increase intracellular Na+ to a toxic level, which may be the main cause of some damage emerging under higher AS. Under SS, barley accumulated organic acids, Cl, SO4 2−, and NO3 to balance the massive influx of cations, the contribution of inorganic ions to ion balance was greater than that of organic acids. However, AS might inhibit absorptions of NO3 and Cl, enhance organic acid synthesis, and SO4 2− absorption to maintain intracellular ion balance and stable pH.  相似文献   
996.
Plants have been recognized as a promising production platform for recombinant pharmaceutical proteins. The human immunodeficiency virus Gag (Pr55gag) structural polyprotein precursor is a prime candidate for developing a HIV-1 vaccine, but, so far, has been expressed at very low level in plants. The aim of this study was to investigate factors potentially involved in Pr55gag expression and increase protein yield in plant cells. In transient expression experiments in various subcellular compartments, the native Pr55gag sequence could be expressed only in the chloroplast. Experiments with truncated subunits suggested a negative role of the 5′-end on the expression of the full gene in the cytosol. Stable transgenic plants were produced in tobacco by Agrobacterium-mediated nuclear transformation with protein targeted to plastids, and biolistic-mediated plastid transformation. Compared to the nuclear genome, the integration and expression of the gag transgene in the plastome resulted in significantly higher protein accumulation levels (up to 7–8% TSP, equivalent to 312–363 mg/kg FW). In transplastomic plants, a 25-fold higher protein accumulation was obtained by translationally fusing the Pr55gag polyprotein to the N-terminus of the plastid photosynthetic RbcL protein. In chloroplasts, the Pr55gag polyprotein was processed in a pattern similar to that achieved by the viral protease, the processing being more extended in older leaves of mature plants. The Gag proteins produced in transgenic plastids were able to assemble into particles resembling VLPs produced in baculovirus/insect cells and E. coli systems. These results indicate that plastid transformation is a promising tool for HIV antigen manufacturing in plant cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. IGV publication no. 330  相似文献   
997.
998.
In tropical lowlands, peatlands are commonly reported from Southeast Asia, and especially Indonesian tropical peatlands are known as considerable C sinks and sources. In contrast, Amazonia has been clearly understudied in this context. In this study, based on field observations from 17 wetland sites in Peruvian lowland Amazonia, we report 0–5.9 m thick peat deposits from 16 sites. Only one of the studied sites did not contain any kind of peat deposit (considering pure peat and clayey peat). Historic yearly peat and C accumulation rates, based on radiocarbon dating of peat samples from five sites, varied from 0.94 ± 0.99 to 4.88 ± 1.65 mm, and from 26 ± 3 to 195 ± 70 g C m−2, respectively. The long-term apparent peat and C accumulation rates varied from 1.69 ± 0.03 to 2.56 ± 0.12 mm yr−1, and from 39 ± 10 to 85 ± 30 g C m−2 yr−1, respectively. These accumulation rates are comparable to those determined in the Indonesian tropical peatlands. Under altered conditions, Indonesian peatlands can release globally relevant amounts of C to the atmosphere. Considering the estimated total area of Amazonian peatlands (150 000 km2) close to that of the Indonesian ones (200 728 km2) as well as several factors threatening the Amazonian peatlands, we suggest that the total C stocks and fluxes associated with Amazonian peatlands may be of global significance.  相似文献   
999.
Reverse process of the coprecipitation of dissolved organic matter with Fe(III) precipitates in a lake is reported. Water containing a slight amount of dissolved oxygen from the hypolimnion of Lake Onogawa was sealed in glass bottles, and some changes in the constituents with time were followed. The water sample contained 0.1 mg l−1 dissolved oxygen at the beginning of the experiment, which decreased to 0.0 mg l−1 within 24 h. In response to the depletion of dissolved oxygen, there were increases in dissolved Fe from 8.4 to 11.4 mg l−1 and dissolved organic carbon (DOC) from 5.1 to 6.9 mg l−1 after 72 h. At the beginning of the experiment, more than 2 mg l−1 of insoluble Fe, which was thought to be Fe(III) precipitates, existed in the water samples. When the water samples became anoxic, the preexisted Fe(III) must have been reduced to soluble Fe(II) over time, resulting in the increase of dissolved Fe. Simultaneous with Fe(III) reduction, coprecipitated DOC with Fe(III) must have been released. The reverse process of the coprecipitation of dissolved organic matter with Fe(III) precipitates found in the present study strongly supports in situ coprecipitation of dissolved organic matter with Fe(III) precipitates. Contribution No. 27 from the Urabandai Limnological Station, Yamagata University.  相似文献   
1000.
Plant biomass and metal shoot accumulation are key factors for efficient phytoextraction. In a previous study, chemical mutagenesis has been used to improve the phytoextraction potential of sunflowers. The main goal of the present study was to assess the stability of sunflower mutants with improved biomass and metal accumulation properties in the 3rd and 4th generations. As compared to control plants, the best M3 mutants showed the following improvement of metal extraction: Cd 3–5-fold, Zn 4–5-fold, and Pb 3–5-fold. The best M4 sunflowers also showed enhanced metal extraction: Cd 3–4- fold, Zn 5–7-fold, Pb 6–8-fold and Cr 5–7-fold. The control sunflower inbred line IBL 04, grown directly on the field, accumulated metals in individual organs in the following decreasing order: Cd and Zn: leaves > stem > roots > flower > seeds; Cr: roots > flower > seeds > leaves > stem. The best sunflower mutants showed either higher metal accumulation in shoots or enhanced metal accumulation in roots, suggesting to improved phytoextraction or rhizofiltration efficiency, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号