首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2908篇
  免费   240篇
  国内免费   173篇
  2024年   16篇
  2023年   40篇
  2022年   32篇
  2021年   51篇
  2020年   128篇
  2019年   97篇
  2018年   107篇
  2017年   106篇
  2016年   74篇
  2015年   68篇
  2014年   105篇
  2013年   211篇
  2012年   64篇
  2011年   101篇
  2010年   85篇
  2009年   124篇
  2008年   130篇
  2007年   141篇
  2006年   137篇
  2005年   105篇
  2004年   91篇
  2003年   89篇
  2002年   83篇
  2001年   53篇
  2000年   50篇
  1999年   55篇
  1998年   57篇
  1997年   53篇
  1996年   54篇
  1995年   66篇
  1994年   67篇
  1993年   42篇
  1992年   63篇
  1991年   43篇
  1990年   61篇
  1989年   43篇
  1988年   51篇
  1987年   42篇
  1986年   35篇
  1985年   40篇
  1984年   50篇
  1983年   24篇
  1982年   35篇
  1981年   42篇
  1980年   31篇
  1979年   28篇
  1978年   12篇
  1977年   9篇
  1976年   14篇
  1974年   8篇
排序方式: 共有3321条查询结果,搜索用时 31 毫秒
101.
In view of the development of al-carnitine deficiency, the metabolism ofl-carnitine and structure-related trimethylammonium compounds was studied inSalmonella typhimurium LT2 by means of thin-layer chromatography (TLC).l-Carnitine, crotonobetaine and acetyl-l-carnitine stimulated the anaerobic growth in a complex medium significantly. The stimulation depended on the formation of -butyrobetaine. The reduction ofl-carnitine proceeded in two steps: (1) Dehydration of thel-carnitine to crotonobetaine, (2) hydrogenation of crotonobetaine to -butyrobetaine. The reduction of crotonobetaine was responsible for the growth stimulation. Terminal electron acceptors of the anaerobic respiration such as nitrate and trimethylamine N-oxide, but not fumarate, suppressed the catabolism ofl-carnitine completely. Glucose fermentation, too, inhibited the reduction ofl-carnitine but optimal growth with a high carnitine catabolism was achieved byd-ribose. The esters of carnitine with medium- and long-chain fatty acids inhibited the growth considerably because of their detergent properties.Abbreviations TLC thin-layer chromatography  相似文献   
102.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   
103.
Role of sugars in nitrate utilization by roots of dwarf bean   总被引:4,自引:0,他引:4  
Nitrate uptake and in vivo, nitrate reductase activity (NRA) in roots of Phaseolus vulgaris, L. cv. Witte Krombek were measured in nitrogen-depleted plants of varying sugar status, Variation in sugar status was achieved at the start of nitrate nutrition by excision, ringing, darkness or administration of sugars to the root medium. The shape of the apparent induction pattern of nitrate uptake was not influenced by the sugar status of the absorbing tissue. When measured after 6 h of nitrate nutrition (0.1 mol m?3), steady state nitrate uptake and root NRA were in the order intact>dark>ringed>excised. Exogenous sucrose restored NRA in excised roots to the level of intact plants. The nitrate uptake rate of excised roots, however, was not fully restored by sucrose (0.03–300 mol m?3). When plants were decapitated after an 18 h NO3? pretreatment, the net uptake rate declined gradually to become negative after three hours. This decline was slowed down by exogenous fructose, whilst glucose rapidly (sometimes within 5 min) stimulated NG?3 uptake. Presumably due to a difference in NO3? due to a difference in NO3? uptake, the NRA of excised roots was also higher in the presence of glucose than in the presence of fructose after 6 h of nitrate nutrition. The sugar-stimulation of, oxygen consumption as well as the release of 14CO2 from freshly absorbed (U-14C) sugar was the same for glucose and fructose. Therefore, we propose a glucose-specific effect on NO3? uptake that is due to the presence of glucose rather than to its utilization in root respiration. A differential glucose-fructose effect on nitrate reductase activity independent of the effect on NO3? uptake was not indicated. A constant level of NRA occurred in roots of NO3? induced plants. Removal of nutrient nitrate from these plants caused an exponential NRA decay with an approximate half-life of 12 h in intact plants and 5.5 h in excised roots. The latter value was also found in roots that were excised in the presence of nitrate, indicating that the sugar status primarily determines the apparent rate of nitrate reductase decay in excised roots.  相似文献   
104.
Summary The symbiotic heterocystous cyanobacteriumAnabaena azollae present in the leaf cavities of the water fernAzolla spp. was studied. The cyanobacteria extracted from the leaf cavities showed differences in pigment composition in three species ofAzolla, i.e A.pinnata var.pinnata, A.caroliniana and A.filiculoides, as observed by pigment absorption and epifluorescence tests. These differences suggest that of these species the cyanobiont ofA. pinnata is the most actively nitrogenfixing form. This has been confirmed by nitrogen fixation (acetylene reduction) tests. Heterocysts of the symbiont ofA. pinnata were characterized by high chlorophylla and low phycocyanin content, a low fluorescence yield of chlorophyll in the heterocysts compared to vegetative cells and a gradient of phycocyanin concentration in the vegetative cells adjacent to heterocysts. This indicates that only photosystem I is present in the heterocyst. In the two otherAzolla species quantitative shifts in the pigment composition occurred suggesting a lower nitrogen fixation activity.In the cyanobiontAnabaena azollae the heterocyst frequency could reach a value of 44–45%. It is argued that there are two generations of heterocysts in a matureAzolla plant, which are concomitant with two peaks of nitrogen fixation activity correlated with leaf age,i.e. leaf number along the main axis of the plant. At both peaks of maximal N2-ase activity, only 20–25% of the heterocysts present are metabolically active as demonstrated by the reduction of Neotetrazolium chloride (NTC) in the heterocysts and darkening of nuclear emulsions by silver salt reduction. Vegetative cells of the cyanobiont reduce Neotetrazolium chloride (NTC) to formazan more rapidly than has been observed in the free-living heterocystous cyanobacteriumAnabaena cylindrica tested in parallel experiments. This feature may be due to a more permeable cell wall of the vegetative cells of the cyanobiont compared to the free-living form, since the vegetative cells of the symbiont play a role in cross-feeding of the host (Azolla).Evidence is obtained that only the heterocysts of the cyanobiont ofAzolla are involved in the nitrogen fixation process as in free-living heterocystous cyanobacterium species. This situation is different from other cyanobacterial symbioses such as inGunnera, Blasia andAnthoceros, where physiological modifications are reported in the symbiosis with another photosynthetic partner such as the absence of O2 evolution and the absence of photo-fixation of CO2 in the cyanobionts.Pigment composition and N2-ase activity in the symbiotic cyanobacteria of three Azolla species have indicated the superiority of theA. pinnata symbiont.A. pinnata var.pinnata is a semidomesticated form used in S.E. Asia for agricultural purposes (irrigated rice culture) to increase soil fertility.It is suggested that by selection (domestication) more efficient strains (clones) can be obtained, and further that with more advanced techniques such as gene mutation and genetic manipulation even more efficient and for agriculture more beneficial clones can be obtained.  相似文献   
105.
Proteoid root morphology and function inLupinus albus   总被引:1,自引:1,他引:0  
Summary Current theories of phosphorus uptake by plants imply that they can augment diffusion to their root axes by the development of abundant root hairs or mycorrhizas. Some phosphorus efficient plants have root morphology with multi-branched roots and localised regions of densely packed root hairs, which we suggest is better suited to the retention of substances exuded by the roots than uptake of substances moving to the root by diffusion. Evidence of substantial exudation by the proteoid roots ofLupinus albus is presented.  相似文献   
106.
Summary Short-term absorption experiments were conducted with intact barley (Hordeum vulgare L.) seedlings to observe the effects of the osmotic potential (Ψπ) and salt species on nitrate uptake andin vivo nitrate reduction. The experiments consisted of growing barley seedlings for 5 days in complete nutrient solutions salinized to (Ψπ) levels of −0.6, −1.8, −3.0, −4.2, and −5.4 bars with NaCl, CaCl2 or Na2SO4. After the absorption period, the seedlings were separated into shoots and roots, weighed, then analyzed for NO3. The nutrient solutions were sampled for NO3 analysis each day immediately before renewing the solutions. The accumulative loss of NO3 from the solutions was considered to be uptake whereas NO3 reduction was the difference between uptake and seedling content. Lowering the (Ψπ) of the nutrient solutions resulted in decreased concentrations of NO3 in the plant, little or no effect (except at the lowest (Ψπ) level) on uptake, and increased nitrate reductase activity. Increased rates of NO3 reduction were in particular associated with the Cl concentration of the nutrient solution.  相似文献   
107.
The capacity of thermal algal-bacterial mats to fix nitrogen (N2) was examined in an alkaline thermal stream, Rabbit Creek, of Yellowstone National Park. Nitrogenase activity and nitrogen-fixation rates of mat cores placed in serum bottles and incubated in situ were estimated by the acetylene-reduction technique. Active nitrogenase was not detected at 60 or 65 C in either the blue-green algal or bacterial undermat components of the mats. Acetylene was reduced by all mats ≤55 C along the thermogradient; mean fixation estimates for the mats ranged from 7 to 5,028 nmoles N2 fixed · mg Chl a?1· hr?1. Maximum fixation occurred at 35 C in the stream; statistical comparison of mean rates ordered the thermogradient mats according to estimated activities: 35 > 40 > 30 > 50 ≥ 55 ≥ 45 C. Mats (≤40 C) dominated by species of Calothrix accounted for ca. 97% of the total nitrogen fixation observed in the stream; the remaining activity was associated with mats containing Mastigocladus laminosus Cohn. Light intensity significantly affected fixation rates of the Calothrix mats which responded in a linear fashion from 9–100% full sunlight (ca. 1,900 μEin · m?2· sec?1). Calothrix mats from 30 and 40 C had maximum nitrogenase activity at their growth temperature suggesting that nitrogen fixation along the thermogradient was optimally adapted to in situ temperatures.  相似文献   
108.
Abstract: Concentrations of selected intermediates of energy metabolism whole rat superior cervical ganglia maintained in vitro by an organ culture technique were compared with values measured in small slices of this maintained under essentially the same conditions. Rates of incorporation [3H]leucine into trichloroacetic acid-precipitable material in whole ganglia mained constant for at least 48 h: however, the oxidation-reduction state tissue as indexed by (NAD):(NADH) ratios calculated from measured amounts of lactate and pyruvate decreased more than 50% within 3h in vitro . Ganglion explants prepared by cutting the tissue into 300-pm transverse sections played (NAD):(NADH) ratios that were about three times greater than noted in whole ganglia maintained in vitro for the same period of time. explants contained significantly higher concentrations of pyruvate and α-ketoglutarate than whole ganglia maintained in culture. Maintenance of vorable metabolic state may support the extensive growth of neurites seen explant cultures of superior cervical ganglia. Outgrowth of processes containing catecholamines could be detected readily in explant cultures of ganglia adult rats; however, this was somewhat slower and less consistent than growth observed in explants from neonatal rats. Outgrowth of neurites adult ganglia was minimal without the addition of Nerve Growth Factor.  相似文献   
109.
The literature concerning the metabolism of carbon compounds during the reduction, assimilation and translocation of nitrogen in root nodules of leguminous plants is reviewed. The reduction of dinitrogen requires an energy source (ATP) and a reluctant which are both supplied by respiratory catabolism of carbohydrates produced by the host plant. Photosynthates are also required to generate the carbon skeletons for amino acid or urcide synthesis during the assimilation of ammonia produced by the bacteria within the nodule tissue. Competition for photosynthates occurs between the bacteroids, nodule tissue and the various vegetative and reproductive sinks in the host plant. The nature of carbon compounds involved in these processes, their routes of metabolism, the mechanisms of control and the partitioning of metabolises between the various sites of utilization are only poorly understood. It is apparent that dinitrogen is reduced to ammonia in the bacteroids. Both fast- and slow-growing strains of Rhizobium possess the Entner-Doudoroff pathway of glucose catabolism, and some, if not all, enzymes of the Emden-Meyerhof pathway. Some bacterial cultures also metabolize carbon through the ketogluconate pathway but only the fast-growing strains of cultured rhizobia possess the key enzyme of the pentose phosphate pathway (6-phosphogluconate dehydrogenase). The host cells are thought to contain the complete Emden-Meyerhof pathway and tricarboxylic acid cycle, which provides the carbon skeletons for assimilation of the ammonia, formed by the bacteroids, into α-amino acids. A pathway of anapleurotic carbon conservation, operative in the host cells, synthesizes oxaloacetic acid through β-carboxylation of phosphoenol pyruvate. This process could be important in the recapture and assimilation of respired CO2 in the rhizosphere. The main route of assimilation of ammonia produced by the bacteroids would appear to be via the glutamine synthetase-glutamate synthase pathway in the host cells. However, glutamate dehydrogenase may also be involved in ammonia assimilation. These enzymes also occur in in vitro cultures of Rhizobium and in bacteroids where they presumably participate in the synthesis of amino acids for growth of the bacteria or bacteroids. Nitrogen assimilated into glutamine or glutamate is exported from the nodules in a variety of forms, which include asparagine, glutamine, aspartate, homoserine and allantoates, in proportions which depend on the legume species. Studies on regulation of the overall process have focussed on expression of bacteroid genes and on the control of enzyme activity, at the level of nitrogenase and enzymes of nitrogen assimilation in particular. However, due to the wide range of experimental techniques, environmental conditions and plant species which have been used, no clear conclusions can yet be drawn. The pathways of carbon flow in nitrogen metabolism, particularly in relation to the synthesis of ureides and the regulation of carbon metabolism, remain key areas for future research in symbiotic nitrogen fixation.  相似文献   
110.
Summary Nitrogen-fixing activity in hardwood forests of the northeastern United States occurred in wood litter, greater than 2 cm in diameter. Activity in large dead wood was independent of species, in the case of deciduous wood litter, but was restricted to partially decayed wood with a high moisture content. Maximum rates of activity were observed in the summer months, minimum rates in the winter. Evidence from six stands of varying ages showed that fixation in large wood litter occurred in only 25% of the samples assayed.Fixation was highest in the youngest, 4 years, and oldest, over 200 years, stands; being about 2 kg/ha/yr. The quantity of nitrogen fixed appears to be related to the biomass of dead wood. Large amounts of wood litter in the youngest stands were from slash left after cutting. As the supply of slash is exhausted by decay, nitrogen fixation decreases, with a low around year 20. Fixation then gradually increases as natural thinning adds wood to the litter compartment.Apparently, the amount of nitrogen fixed in dead wood the first 20 years following clearcutting can only replace a modest fraction of the amount lost as a result of the cutting and product removal. Finally, the results indicate that nitrogen fixation in wood litter does not equal nitrogen fixation in a northern hardwood forest calculated using a mass balance approach, suggesting that additional nitrogen inputs exist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号