首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   1篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   19篇
  2013年   9篇
  2012年   18篇
  2011年   31篇
  2010年   21篇
  2009年   5篇
  2008年   7篇
  2007年   11篇
  2006年   11篇
  2005年   15篇
  2004年   9篇
  2003年   9篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1971年   1篇
排序方式: 共有214条查询结果,搜索用时 140 毫秒
41.
目的:本研究利用超声心动图检测高血压心室肥厚患者左心房结构,探讨当左心结构发生变化时心脏功能所受到的影响,为高血压及其并发症的临床诊断提供检测及诊断参考。方法:选取2011年5月-2013年1月在我院接受检查的高血压心室肥厚患者76例作为观察组,另选取同期经体检的健康人群60例为健康对照组,利用超声心动图观察左心功能和结构,比较两组研究对象的左心房内径(LAD)、心肌质量(LVMM)、舒张末容积(LVEDV)、收缩末容积(LVESV)、左心室射血分数(LVEF)及二尖瓣口舒张末期流速比值(E/A)。结果:两组间心室收缩功能无显著性差异(P0.05);高血压组LAD高于对照组,LVEF及E/A低于对照组,差异具有统计学意义(P0.05);高血压Ⅰ期、Ⅱ期、Ⅲ期患者间比较,左房内径随血压的升高逐渐递增,而左心室射血分数和二尖瓣口舒张期流速比值则逐渐递减,差异具有统计学意义(P0.05)。结论:超声心动图可以直观的显示高血压心室肥厚患者左心功能及血流动力学的变化,对临床诊断具有积极的意义。  相似文献   
42.
The cardiac troponin I (cTnI) R21C (cTnI-R21C) mutation has been linked to hypertrophic cardiomyopathy and renders cTnI incapable of phosphorylation by PKA in vivo. Echocardiographic imaging of homozygous knock-in mice expressing the cTnI-R21C mutation shows that they develop hypertrophy after 12 months of age and have abnormal diastolic function that is characterized by longer filling times and impaired relaxation. Electrocardiographic analyses show that older R21C mice have elevated heart rates and reduced cardiovagal tone. Cardiac myocytes isolated from older R21C mice demonstrate that in the presence of isoproterenol, significant delays in Ca2+ decay and sarcomere relaxation occur that are not present at 6 months of age. Although isoproterenol and stepwise increases in stimulation frequency accelerate Ca2+-transient and sarcomere shortening kinetics in R21C myocytes from older mice, they are unable to attain the corresponding WT values. When R21C myocytes from older mice are treated with isoproterenol, evidence of excitation-contraction uncoupling is indicated by an elevation in diastolic calcium that is frequency-dissociated and not coupled to shorter diastolic sarcomere lengths. Myocytes from older mice have smaller Ca2+ transient amplitudes (2.3-fold) that are associated with reductions (2.9-fold) in sarcoplasmic reticulum Ca2+ content. This abnormal Ca2+ handling within the cell may be attributed to a reduction (2.4-fold) in calsequestrin expression in conjunction with an up-regulation (1.5-fold) of Na+-Ca2+ exchanger. Incubation of permeabilized cardiac fibers from R21C mice with PKA confirmed that the mutation prevents facilitation of mechanical relaxation. Altogether, these results indicate that the inability to enhance myofilament relaxation through cTnI phosphorylation predisposes the heart to abnormal diastolic function, reduced accessibility of cardiac reserves, dysautonomia, and hypertrophy.  相似文献   
43.
Malfunctions in regulatory pathways that control cell size are prominent in pathological cardiac hypertrophy. Here, we show annexin A6 (Anxa6) to be a crucial regulator of atrial natriuretic peptide (ANP)-mediated counterhypertrophic responses in cardiomyocytes. Adrenergic stimulation of H9c2 cardiomyocytes by phenylephrine (PE) increased the cell size with enhanced expression of biochemical markers of hypertrophy, concomitant with elevated expression and subcellular redistribution of Anxa6. Stable cell lines with controlled increase in Anxa6 levels were protected against PE-induced adverse changes, whereas Anxa6 knockdown augmented the hypertrophic responses. Strikingly, Anxa6 knockdown also abrogated PE-induced juxtanuclear accumulation of secretory granules (SG) containing ANP propeptides (pro-ANP), a signature of maladaptive hypertrophy having counteractive functions. Mechanistically, PE treatment prompted a dynamic association of Anxa6 with pro-ANP-SG, parallel to their participation in anterograde traffic, in an isoform-specific fashion. Moreover, Anxa6 mutants that failed to associate with pro-ANP hindered ANP-mediated protection against hypertrophy, which was rescued, at least partially, by WT Anxa6. Additionally, elevated intracellular calcium (Ca2+) stimulated Anxa6-pro-ANP colocalization and membrane association. It also rescued pro-ANP translocation in cells expressing an Anxa6 mutant (Anxa6ΔC). Furthermore, stable overexpression of Anxa6T356D, a mutant with superior flexibility, provided enhanced protection against PE, compared with WT, presumably due to enhanced membrane-binding capacity. Together, the present study delivers a cooperative mechanism where Anxa6 potentiates ANP-dependent counterhypertrophic responses in cardiomyocytes by facilitating regulated traffic of pro-ANP.  相似文献   
44.
Understanding the regulation of cardiac fibrosis is critical for controlling adverse cardiac remodeling during heart failure. Previously we identified miR-378 as a cardiomyocyte-abundant miRNA down-regulated in several experimental models of cardiac hypertrophy and in patients with heart failure. To understand the consequence of miR-378 down-regulation during cardiac remodeling, our current study employed a locked nucleic acid-modified antimiR to target miR-378 in vivo. Results showed development of cardiomyocyte hypertrophy and fibrosis in mouse hearts. Mechanistically, miR-378 depletion was found to induce TGFβ1 expression in mouse hearts and in cultured cardiomyocytes. Among various secreted cytokines in the conditioned-media of miR-378-depleted cardiomyocytes, only TGFβ1 levels were found to be increased. The increase was prevented by miR-378 expression. Treatment of cardiac fibroblasts with the conditioned media of miR-378-depleted myocytes activated pSMAD2/3 and induced fibrotic gene expression. This effect was counteracted by including a TGFβ1-neutralizing antibody in the conditioned-medium. In cardiomyocytes, adenoviruses expressing dominant negative N-Ras or c-Jun prevented antimiR-mediated induction of TGFβ1 mRNA, documenting the importance of Ras and AP-1 signaling in this response. Our study demonstrates that reduction of miR-378 during pathological conditions contributes to cardiac remodeling by promoting paracrine release of profibrotic cytokine, TGFβ1 from cardiomyocytes. Our data imply that the presence in cardiomyocyte of miR-378 plays a critical role in the protection of neighboring fibroblasts from activation by pro-fibrotic stimuli.  相似文献   
45.
46.
Flow-perfusion is being promoted as a way to grow tissue-engineered cartilage in vitro. Yet, there is a concern that flow-perfusion may induce unwanted mechanical effects on chondrogenesis and terminal differentiation. Therefore, the aim of this study is to evaluate the effect of fluid flow on chondrogenesis and chondrocyte hypertrophy of MSCs in a well-established pellet culture model.  相似文献   
47.
Pathologic and physiologic factors acting on the heart can produce consistent pressure changes, volume overload, or increased cardiac output. These changes may then lead to cardiac remodeling, ultimately resulting in cardiac hypertrophy. Exercise can also induce hypertrophy, primarily physiologic in nature. To determine the mechanisms responsible for each type of remodeling, it is important to examine the heart at the functional unit, the cardiomyocyte. Tests of individual cardiomyocyte function in vitro provide a deeper understanding of the changes occurring within the heart during hypertrophy. Examination of cardiomyocyte function during exercise primarily follows one of two pathways: the addition of hypertrophic inducing agents in vitro to normal cardiomyocytes, or the use of trained animal models and isolating cells following the development of hypertrophy in vivo. Due to the short lifespan of adult cardiomyocytes, a proportionately scant amount of research exists involving the direct stimulation of cells in vitro to induce hypertrophy. These attempts provide the only current evidence, as it is difficult to gather extensive data demonstrating cell growth as a result of in vitro physical stimulation. Researchers have created ways to combine skeletal myocytes with cardiomyocytes to produce functional muscle cells used to repair pathologic heart tissue, but continue to struggle with the short lifespan of these cells. While there have been promising findings regarding the mechanisms that surround cardiac hypertrophy in vitro, the translation of in vitro findings to in vivo function is not consistent. Therefore, the focus of this review is to highlight recent studies that have investigated the effect of exercise on the heart, both in vitro and in vivo.  相似文献   
48.
波动性高糖对乳鼠心肌细胞肥大的影响   总被引:1,自引:0,他引:1  
目的 探讨波动性糖环境对体外培养的乳鼠心肌细胞肥大的影响.方法 取出生后2天SD大鼠乳鼠心脏,采用胶原酶消化法获取心肌细胞,进行心肌细胞原代培养.常规培养心肌细胞72h,待细胞搏动良好,将其随机分为3组:①对照组:给予稳定的糖浓度(5.5mmol/L);②高糖组:给予稳定高糖浓度(25.5mmol/L);③波动性糖组:波动性糖浓度为5.5mmol/L和25.5mmol/L,每12h交替,其他培养条件保持一致.Bradford法检测各组细胞总蛋白质含量;计算机细胞图像分析系统测量单个细胞的体积;采用3H-亮氨酸掺入法,用液闪仪测定心肌细胞蛋白质合成速率.结果 1.高糖组和波动性糖组与对照组相比心肌细胞蛋白含量均增加,波动性糖组与高糖组相比二者增加的数值相近.2.高糖组和波动性糖组与对照组相比心肌细胞体积均有明显增加.3.高糖组与波动性糖组与对照组相比均有蛋白合成的增加.波动性糖组与高糖组相比没有显著性差异.结论 波动性糖有促进心肌细胞肥大的作用,其作用强度与单纯性高糖相仿.在糖尿病心肌病中,波动性糖也是引起心肌细胞肥大、心肌顺应性下降的原因之一.提示临床治疗糖尿病患者时,除了要控制血糖防止血糖过高,而且还要保持血糖的稳定,减少血糖波动所导致的心肌损害.  相似文献   
49.
The androgenic glands (AG) of male decapod crustaceans produce insulin-like androgenic gland (IAG) hormone that controls male sex differentiation, growth and behavior. Functions of the AG are inhibited by gonad-inhibiting hormone originating from X-organ-sinus gland complex in the eyestalk. The AG, and its interaction with the eyestalk, had not been studied in the blue swimmer crab, Portunus pelagicus, so we investigated the AG structure, and then changes of the AG and IAG-producing cells following eyestalk ablation. The AG of P. pelagicus is a small endrocrine organ ensheathed in a connective tissue and attached to the distal part of spermatic duct and ejaculatory bulb. The gland is composed of several lobules, each containing two major cell types. Type I cells are located near the periphery of each lobule, and distinguished as small globular cells of 5-7 μm in diameter, with nuclei containing mostly heterochromatin. Type II cells are 13-15 μm in diameter, with nuclei containing mostly euchromatin and prominent nucleoli. Both cell types were immunoreactive with anti-IAG. Following bilateral eyestalk ablation, the AG underwent hypertrophy, and at day 8 had increased approximately 3-fold in size. The percentage of type I cells had increased more than twice compared with controls, while type II cells showed a corresponding decrease.  相似文献   
50.
Myostatin, which is a member of the TGF-beta superfamily, is a negative regulator of skeletal muscle formation. Double-muscled Piedmontese cattle have a C313Y mutation in myostatin and show increased skeletal muscle mass which resulted from an increase of myofiber number (hyperplasia) without that of myofiber size (hypertrophy). To examine whether this mutation in myostatin gene affects muscle development in a dominant negative manner, we generated transgenic mice overexpressing the mutated gene. The transgenic mice exhibited dramatic increases in the skeletal muscle mass resulting from hyperplasia without hypertrophy. In contrast, it has been reported that a myostatin mutated at its cleavage site produces hypertrophy without hyperplasia in the muscle. Thus, these results suggest that (1) the myostatin containing the missense mutation exhibits a dominant negative activity and that (2) there are two types in the dominant negative form of myostatin, causing either hypertrophy or hyperplasia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号