首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   0篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
21.
To elucidate determinants of thermostability and folding pathways of the intrinsically stable proteins from extremophilic organisms, we are studying β-glucosidase from Pyrococcus furiosus. Using fluorescence and circular dichroism spectroscopy, we have characterized the thermostability of β-glucosidase at 90°C, the lowest temperature where full unfolding is achieved with urea. The chemical denaturation profile reveals that this homotetrameric protein unfolds at 90°C with an overall ΔG° of ∼ 20 kcal mol−1. The high temperatures needed to chemically denature P. furiosus β-glucosidase and the large ΔG° of unfolding at high temperatures shows this to be one of the most stable proteins yet characterized. Unfolding proceeds via a three-state pathway that includes a stable intermediate species. Stability of the native and intermediate forms is concentration dependent, and we have identified a dimeric assembly intermediate using high temperature native gel electrophoresis. Based on this data, we have developed a model for the denaturation of β-glucosidase in which the tetramer dissociates to partially folded dimers, followed by the coupled dissociation and denaturation of the dimers to unfolded monomers. The extremely high stability is thus derived from a combination of oligomeric interactions and subunit folding.  相似文献   
22.
23.
The gene encoding a thermostable iron-containing alcohol dehydrogenase from Thermococcus Strain ES1 (ES1 ADH) was cloned, sequenced and expressed in Escherichia coli. The recombinant and native ES1 ADHs were purified using multistep column chromatography under anaerobic conditions. Both enzymes appeared to be homotetramers with a subunit size of 45 ± 1 kDa as revealed by SDS-PAGE, which was close to the calculated value (44.8 kDa). The recombinant ADH contained 1.0 ± 0.1 g-atom iron per subunit. Both enzymes were sensitive to oxygen with a half-life upon exposure to air of about 4 min. The recombinant enzyme exhibited a specific activity of 105 ± 2 U mg−1, which was very similar to that of the native enzyme (110 ± 3 U mg−1). The optimal pH-values for both enzymes for ethanol oxidation and acetaldehyde reduction were 10.4 and 7.0, respectively. Both enzymes also showed similar temperature-dependent activities, and catalyzed the oxidation of primary alcohols, but there was no activity towards methanol and secondary alcohols. Kinetic parameters of the enzymes showed lower K m-values for acetaldehyde and NADPH and higher K m-values for ethanol and NADP+. It is concluded that the gene encoding ES1 ADH was expressed successfully in E. coli. This is the first report of a fully active recombinant version of an iron-containing ADH from a hyperthermophile.  相似文献   
24.
Archaeal histone, which possesses only the core domain part of eukaryal histone, induced DNA compaction by binding to DNA. Based on structural modeling, tetramer formation by dimer-dimer interaction is considered to require two intermolecular ion pairs formed between histidine and aspartate. To examine the role of the ion pairs on DNA compaction, mutant histones were constructed and analyzed using HpkB from Thermococcus kodakaraensis KOD1 as a model protein. The mutant histones, HpkB-H50A, HpkB-H50V, and HpkB-H50G were constructed by replacing conserved surface His50 with Ala, Val, and Gly, respectively. Circular dichroism analysis indicated no significant difference between wild-type and mutants in their structures. Gel mobility shift assays showed that all mutants possessed DNA binding ability, like wild-type HpkB, however all mutants compacted DNA less efficiently than the wild-type. Moreover, all mutants could not maintain the nucleosome-like structure (compacted form of DNA) above 80 degrees C. These results suggest that surface ion pairs between His and Asp play an important role in maintenance of nucleosome structure and DNA stabilization at high temperature.  相似文献   
25.
A redox protein gene (PH0178) with high sequence homology to a glutaredoxin from Pyrococcus furiosus and a thioredoxin reductase homologue gene (PH1426) were found in the genome sequence of Pyrococcus horikoshii. These two genes were cloned and the corresponding expressed proteins were characterized. The redox protein from PH0178 had strong thioredoxin-like activity, but no glutaredoxin activity. The protein from PH1426 had some reductase activity against thioredoxin from Escherichia coli as well as the redox protein (PH0178). The protein from PH1426 was a typical, homodimeric flavoprotein. These results indicate that the redox protein (PH0178) is not a glutaredoxin but, rather, a new protein-disulfide oxidoreductase that is involved in a thioredoxin-like system with thioredoxin reductase (PH1426) in P. horikoshii. The redox protein and thioredoxin reductase retained their full activities for over 1h at 100 degrees C. The redox potential of the redox protein was similar to that of thioredoxin from E. coli and lower than that of glutathione. Site-directed mutagenesis studies revealed that the active site of the redox protein corresponds to a CPYC sequence, located in the middle of the sequence.  相似文献   
26.
We identified a gene encoding a soluble quinoprotein glucose dehydrogenase homologue in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The enzyme was extremely thermostable, and the activity of the pyrroloquinoline quinone (PQQ)-bound holoenzyme was not lost after incubation at 100 °C for 10 min. The crystal structure of the enzyme was determined in both the apoform and as the PQQ-bound holoenzyme. The overall fold of the P. aerophilum enzyme showed significant similarity to that of soluble quinoprotein aldose sugar dehydrogenase (Asd) from E. coli. However, clear topological differences were observed in the two long loops around the PQQ-binding sites of the two enzymes. Structural comparison revealed that the hyperthermostability of the P. aerophilum enzyme is likely attributable to the presence of an extensive aromatic pair network located around a β-sheet involving N- and C-terminal β-strands.  相似文献   
27.
Archaeal Group II chaperonins (Cpns) are strongly conserved, considering that their growth temperatures range from 23 to 122 °C. The C-terminal 15–25 residues are hypervariable, and highly charged in thermophilic species. Our hypothesis is that the C-terminal is a key determinant of stabilization of the Cpn complex. The C-terminus of the Cpn from the hyperthermophile Pyrococcus furiosus was mutated to test this hypothesis. C-terminal deletions and replacement of charged residues resulted in destabilization. The stability of ATPase activity declined in proportion to the reduction in charged residues with Ala or Gly. An EK-rich motif (528EKEKEKEGEK537) proved to be a key domain for stabilization at or near 100 °C. Mutations “tuned” the Cpn for optimal protein folding at lower optimal temperatures, and Glu substitution was more potent than Lys replacement. Pf Cpn stability was enhanced by Ca2+, especially in the mutant Cpn lacking C-terminal Lys residues. This suggests that Glu-Glu interactions between C termini might be mediated by Ca2+. The C-terminal of a Cpn from the psychrophilic archaeon Methanococcoides burtonii was replaced by a domain from the hyperthermophile, resulting in increased thermostability and thermoactivity. We conclude that localized evolutionary variation in the C-terminus modulates the temperature range of archaeal Cpns.  相似文献   
28.
Several representatives of the Crenarchaeal branch of the Archaea contain highly abundant, small, positively charged proteins exemplified by the Sso7d protein from Sulfolobus solfataricus. These proteins bind to DNA in a non-sequence-specific manner. Using publicly available genomic sequence information, we identified a second class of small Crenarchaeal DNA-binding proteins represented by the Pyrobaculum aerophilum open reading frame 3192–encoded (Pae3192) protein and its paralogs. We investigated the biochemical properties of the Pae3192 protein and an orthologous protein (Ape1322b) from Aeropyrum pernix in side-by-side experiments with the Sso7d protein. We demonstrate that the recombinant Ape1322b, Pae3192 and Sso7d proteins bind to DNA and that the DNA-protein complexes formed are slightly different for each protein. We show that like Sso7d, Pae3192 constrains negative supercoils in DNA. In addition, we show that all three proteins raise the melting temperature of duplex DNA upon binding. Finally, we present the equilibrium affinity constants and kinetic association constants of each protein for single-stranded and double-stranded DNA.  相似文献   
29.
A gene encoding a nicotinamide mononucleotide (NMN) adenylyltransferase (NMNAT, EC 2.7.7.1) homologue was identified via genome sequencing in the anaerobic hyperthermophilic archaeon Pyrococcus horikoshii OT-3. The gene encoded a protein of 186 amino acids with a molecular weight of 21,391. The deduced amino acid sequence of the gene showed 59% identities to the NMNAT from Methanococcus jannaschii. The gene was overexpressed in Escherichia coli, and the produced enzyme was purified to homogeneity. Characterization of the enzyme revealed that it is an extremely thermostable NMNAT; the activity was not lost after incubation at 80 °C for 30 min. The native molecular mass was estimated to be 77 kDa. The Km values for ATP and NMN were calculated to be 0.056 and 0.061 mM, respectively. The optimum temperature of the reaction was estimated to be around 90 °C. The adenylyl group donor specificity was examined by high-performance liquid chromatography (HPLC). At 70 °C, ATP was a prominent donor. However, above 80 °C, a relatively small, but significant, NMNAT activity was detected when ATP was replaced by ADP or AMP in the reaction mixture. To date, an NMNAT that utilizes ADP or AMP as an adenylyl group donor has not been found. The present study provides interesting information in which a di- or mono-phosphate nucleotide can be utilized by adenylyltransferase at high temperature.  相似文献   
30.
A hyperthermophilic -1,4 endoglucanase was identified in Pyrococcus horikoshii, a hyperthermophilic archaeon. In order to clarify the function of the protein in detail, structural and catalytic site studies were performed using protein engineering. By removing some of the C-terminal sequence of the ORF of the endoglucanase (PH1171), two types of recombinant proteins were expressed from one ORF, using Escherichia coli. One exhibited endoglucanase activity, and the other did not. An SD-like sequence was identified in the ORF of the endoglucanase. By removing the SD-like sequence without changing the amino acid sequence of the endoglucanase, one recombinant endoglucanase was prepared effectively from E. coli. From the analysis of the N- and C-terminal regions of the ORF, this endoglucanase appears to be a secreted and membrane-binding enzyme of P. horikoshii. A mutation analysis of the endoglucanase, using the synthetic substrate, indicated that Glu342 is a candidate for the active center and plays a critical role in the activity of the enzyme. Additional catalytic amino acid residues were not found. These results indicate that the catalytic residue of the enzyme is different from that of typical family 5 endoglucanase, even though it has a high homology to the endoglucanase from Acidothermus celluloliticus. The activity of the enzyme, using carboxy methylcellulose and crystalline cellulose as the substrates, was increased, but not for a synthetic low-molecular substrate when a carbohydrate-binding module of chitinase from P. furiosus was added to the C-terminal region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号