首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   68篇
  国内免费   5篇
  2024年   3篇
  2023年   11篇
  2022年   11篇
  2021年   15篇
  2020年   16篇
  2019年   22篇
  2018年   16篇
  2017年   22篇
  2016年   19篇
  2015年   34篇
  2014年   39篇
  2013年   80篇
  2012年   29篇
  2011年   45篇
  2010年   25篇
  2009年   21篇
  2008年   29篇
  2007年   26篇
  2006年   27篇
  2005年   9篇
  2004年   24篇
  2003年   9篇
  2002年   13篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   9篇
  1995年   4篇
  1994年   4篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1975年   1篇
排序方式: 共有603条查询结果,搜索用时 918 毫秒
201.
The incorporation of a carboxylic acid within in a series of 3-amido-4-aryl substituted piperidines (represented by general structure 32) led to the discovery of potent, zwitterionic, renin inhibitors with improved off-target profiles (CYP3A4 time-dependent inhibition and hERG affinity) relative to analogous non-zwitterionic inhibitors of the past (i.e., 3). Strategies to address the oral absorption of these zwitterions are also discussed within.  相似文献   
202.
203.
There is growing evidence that vascular arginase plays a role in pathophysiology of vascular diseases. We recently reported high arginase activity/expression in young adult hypertensive spontaneously hypertensive rats (SHR). The aim of the present study was to characterize the time course of arginase pathway abnormalities in SHR and to explore the contributing role of hemodynamics and inflammation. Experiments were conducted on 5, 10, 19 and 26-week-old SHR and their age-matched control Wistar Kyoto (WKY) rats. Arginase activity as well as expression of arginase I, arginase II, endothelial and inducible NOS were determined in aortic tissue extracts. Levels of L-arginine, NO catabolites and IL-6 (a marker of inflammation) were measured in plasma. Arginase activity/expression was also measured in 10-week-old SHR previously treated with hydralazine (20 mg/kg/day, per os, for 5 weeks). As compared to WKY, SHR exhibited high vascular arginase I and II expression from prehypertensive to established stages of hypertension. However, a mismatch between expression and activity was observed at the prehypertensive stage. Arginase expression was not related either to plasma IL-6 levels or to expression of NOS. Prevention of hypertension by hydralazine significantly blunted arginase upregulation and restored arginase activity. Importantly, arginase activity and blood pressure (BP) correlated in SHR. In conclusion, our results demonstrate that arginase upregulation precedes blood pressure rising and identify elevated blood pressure as a contributing factor of arginase dysregulation in genetic hypertension. They also demonstrated a close relationship between arginase activity and BP, thus making arginase a promising target for antihypertensive therapy.  相似文献   
204.
He J  Chen S  Gu J 《FEBS letters》2007,581(16):2965-2973
A gene encoding a novel serine protease designated as Harobin is cloned and identified from a sea snake venom gland bacteriophage T7 library. It has 265 amino acids and shares 50-70% similarity to terrestrial snake serine proteases. In addition to the 12 conservative Cys, it has three more Cys residues that may contribute to its higher enzymatic stability. Harobin is expressed in Pichia pastoris and purified. Recombinant Harobin exhibits an amidolytic activity, and specifically degrades Aalpha, Bbeta-chain of fibrinogen. It functions as a defibrase both in vitro and in vivo, and reduces thrombosis. Harobin prolongs the coagulation time and the bleeding time of mice and reduces the fibrinogen levels of rats as well. Meanwhile, intravenous injection of Harobin leads to the reduction of blood pressure in SHR rats. It results from the ability of Harobin that cleaves angiotensin I and release bradykinin from plasma kininogen in vitro and in vivo. These data suggest that Harobin is a novel defibrase and has a potential to be an agent for the therapy of thrombosis and hypertension.  相似文献   
205.
Lu X  Zhao W  Huang J  Li H  Yang W  Wang L  Huang W  Chen S  Gu D 《Human genetics》2007,121(3-4):327-335
The human plasma kallikrein gene (KLKB1) encodes plasma kallikrein, a serine protease that catalyzes the release of kinins and other vasoactive peptides and may be involved in the pathogenesis of hypertension. In this study, we performed a haplotype-based study to assess the effect of common genetic variation in the KLKB1 gene on the risk of essential hypertension. Eight common single nucleotide polymorphisms (SNPs) were selected from the HapMap database and used to determine the pattern of linkage disequilibrium (LD) and haplotype structure within the KLKB1 gene. Four tag SNPs were then identified with over 85% power to predict both common haplotypes and remaining common SNPs, and genotyped in 1,317 cases with essential hypertension and 1,269 healthy controls. Single SNP analyses indicated that SNPs rs2304595 and rs4253325 were significantly associated with hypertension, adjusted for covariates. Compared with the most common Hap2 CAGC, Hap1 AGAC and Hap3 CGAC, which carry the susceptible rs2304595 G allele and rs4253325 A allele, were found to significantly increase the risk of essential hypertension with adjusted odds ratios equal to 1.37 and 1.17, respectively (P < 0.0001 and 0.028). A strongly significant interaction with gene-drinking was also observed. Among drinkers, the adjusted OR for Hap1 relative to Hap2 was increased to 2.50 (95% CI, 2.40 to 2.61; P < 0.0001). This was the first study to perform association analysis of the KLKB1 gene with essential hypertension. Our findings suggested that common genetic variation in the KLKB1 gene might contribute to the risk of hypertension in the northern Han Chinese population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Conflict of interests: None.  相似文献   
206.
Changes in blood flow are a principal mechanism of thermoregulation in vertebrates. Changes in heart rate will alter blood flow, although multiple demands for limited cardiac output may compromise effective thermoregulation. We tested the hypothesis that regional differences in blood flow during heating and cooling can occur independently from changes in heart rate. We measured heart rate and blood pressure concurrently with blood flow in the crocodile, Crocodylus porosus. We measured changes in blood flow by laser Doppler flowmetry, and by injecting coloured microspheres. All measurements were made under different heat loads, with and without blocking cholinergic and β-adrenergic receptors (autonomic blockade). Heart rates were significantly faster during heating than cooling in the control animals, but not when autonomic receptors were blocked. There were no significant differences in blood flow distribution between the control and autonomic blockade treatments. In both treatments, blood flow was directed to the dorsal skin and muscle and away from the tail and duodenum during heating. When the heat source was switched off, there was a redistribution of blood from the dorsal surface to the duodenum. Blood flow to the leg skin and muscle, and to the liver did not change significantly with thermal state. Blood pressure was significantly higher during the autonomic blockade than during the control. Thermal time constants of heating and cooling were unaffected by the blockade of autonomic receptors. We concluded that animals partially compensated for a lack of differential heart rates during heating and cooling by redistributing blood within the body, and by increasing blood pressure to increase flow. Hence, measures of heart rate alone are insufficient to assess physiological thermoregulation in reptiles.  相似文献   
207.
Introduction: Hypertension is a multifactorial disease that has, thus far, proven to be a difficult target for pharmacological intervention. The application of proteomic strategies may help to identify new biomarkers for the early diagnosis and prompt treatment of hypertension, in order to control blood pressure and prevent organ damage.

Areas covered: Advances in proteomics have led to the discovery of new biomarkers to help track the pathophysiological processes implicated in hypertension. These findings not only help to better understand the nature of the disease, but will also contribute to the clinical needs for a timely diagnosis and more precise treatment. In this review, we provide an overview of new biomarkers identified in hypertension through the application of proteomic techniques, and we also discuss the difficulties and challenges in identifying biomarkers in this clinical setting. We performed a literature search in PubMed with the key words ‘hypertension’ and ‘proteomics’, and focused specifically on the most recent literature on the utility of proteomics in hypertension research.

Expert opinion: There have been several promising biomarkers of hypertension identified by proteomics, but too few have been introduced to the clinic. Thus, further investigations in larger cohorts are necessary to test the feasibility of this strategy for patients. Also, this emerging field would profit from more collaboration between clinicians and researchers.  相似文献   

208.
Pulmonary hypertension (PH) is a complex disorder, spanning several known vascular cell types. Recently, we identified the microRNA-130/301 (miR-130/301) family as a regulator of multiple pro-proliferative pathways in PH, but the true breadth of influence of the miR-130/301 family across cell types in PH may be even more extensive. Here, we employed targeted network theory to identify additional pathogenic pathways regulated by miR-130/301, including those involving vasomotor tone. Guided by these predictions, we demonstrated, via gain- and loss-of-function experimentation in vitro and in vivo, that miR-130/301-specific control of the peroxisome proliferator-activated receptor γ regulates a panel of vasoactive factors communicating between diseased pulmonary vascular endothelial and smooth muscle cells. Of these, the vasoconstrictive factor endothelin-1 serves as an integral point of communication between the miR-130/301-peroxisome proliferator-activated receptor γ axis in endothelial cells and contractile function in smooth muscle cells. Thus, resulting from an in silico analysis of the architecture of the PH disease gene network coupled with molecular experimentation in vivo, these findings clarify the expanded role of the miR-130/301 family in the global regulation of PH. They further emphasize the importance of molecular cross-talk among the diverse cellular populations involved in PH.  相似文献   
209.
Accumulating evidence suggests that growth differentiation factor 15 (GDF-15) is associated with the severity and prognosis of various cardiovascular diseases. However, the effect of GDF-15 on the regulation of cardiac remodeling is still poorly understood. In this present study, we demonstrate that GDF-15 blocks norepinephrine (NE)-induced myocardial hypertrophy through a novel pathway involving inhibition of EGFR transactivation. Both in vivo and in vitro assay indicate that NE was able to stimulate the synthesis of GDF-15. The up-regulation of GDF-15 feedback inhibits NE-induced myocardial hypertrophy, including quantitation of [3H]leucine incorporation, protein/DNA ratio, cell surface area, and ANP mRNA level. Further research shows that GDF-15 could inhibit the phosphorylation of EGF receptor and downstream kinases (AKT and ERK1/2) induced by NE. Clinical research also shows that serum GDF-15 levels in hypertensive patients were significant higher than in healthy volunteers and were positively correlated with the thickness of the posterior wall of the left ventricle, interventricular septum, and left ventricular mass, as well as the serum level of norepinephrine. In conclusion, NE induces myocardial hypertrophy and up-regulates GDF-15, and this up-regulation of GDF-15 negatively regulates NE-induced myocardial hypertrophy by inhibiting EGF receptor transactivation following NE stimulation.  相似文献   
210.
The aim of this study was to determine the effect that a thermal renal denervation cycle has on the mechanical properties of the arterial wall. Porcine arterial tissue specimens were tested in three groups: native tissue, decellularized tissue, decellularized with collagen digestion (e.g. elastin only). One arterial specimen was used as an unheated control specimen while another paired specimen was subjected to a thermal cycle of 70 °C for 120 s (n=10). The specimens were subjected to tensile loading and a shrinkage analysis. We observed two key results: The mechanical properties associated with the elastin extracellular matrix (ECM) were not affected by the thermal cycle. The effect of the thermal cycle on the collagen (ECM) was significant, in both the native and decellularized groups the thermal cycle caused a statistically significant decrease in stiffness, and failure strength, moreover the native tissue demonstrated a 27% reduction in lumen area post exposure to the thermal cycle. We have demonstrated that a renal denervation thermal cycle can significantly affect the mechanical properties of an arterial wall, and these changes in stiffness and failure strength were associated with alterations to the collagen rather than the elastin extracellular matrix component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号