首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   68篇
  国内免费   5篇
  2024年   3篇
  2023年   11篇
  2022年   11篇
  2021年   15篇
  2020年   16篇
  2019年   22篇
  2018年   16篇
  2017年   22篇
  2016年   19篇
  2015年   34篇
  2014年   39篇
  2013年   80篇
  2012年   29篇
  2011年   45篇
  2010年   25篇
  2009年   21篇
  2008年   29篇
  2007年   26篇
  2006年   27篇
  2005年   9篇
  2004年   24篇
  2003年   9篇
  2002年   13篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   9篇
  1995年   4篇
  1994年   4篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1975年   1篇
排序方式: 共有603条查询结果,搜索用时 78 毫秒
131.
妊娠期间母胎界面存在着复杂的免疫调控关系,蜕膜及绒毛作为母体及胎儿的直接接触面,是发生免疫反应的重要部位。多种细胞因子如转化生长因子-β、肿瘤坏死因子-α及血管内皮细胞等具有营养细胞、调控滋养细胞侵入、免疫抑制、防止母胎排斥等多种功能,他们在正常妊娠的维持中起着重要的作用。目前转化生长因子-β2的作用已越来越受重视,本文将从转化生长因子-β2与妊娠期高血压疾病存在的关系作如下综述。  相似文献   
132.
An altered cardiac myofilament response to activating Ca(2+) is a hallmark of human heart failure. Phosphorylation of cardiac troponin I (cTnI) is critical in modulating contractility and Ca(2+) sensitivity of cardiac muscle. cTnI can be phosphorylated by protein kinase A (PKA) at Ser(22/23) and protein kinase C (PKC) at Ser(22/23), Ser(42/44), and Thr(143). Whereas the functional significance of Ser(22/23) phosphorylation is well understood, the role of other cTnI phosphorylation sites in the regulation of cardiac contractility remains a topic of intense debate, in part, due to the lack of evidence of in vivo phosphorylation. In this study, we utilized top-down high resolution mass spectrometry (MS) combined with immunoaffinity chromatography to determine quantitatively the cTnI phosphorylation changes in spontaneously hypertensive rat (SHR) model of hypertensive heart disease and failure. Our data indicate that cTnI is hyperphosphorylated in the failing SHR myocardium compared with age-matched normotensive Wistar-Kyoto rats. The top-down electron capture dissociation MS unambiguously localized augmented phosphorylation sites to Ser(22/23) and Ser(42/44) in SHR. Enhanced Ser(22/23) phosphorylation was verified by immunoblotting with phospho-specific antibodies. Immunoblot analysis also revealed up-regulation of PKC-α and -δ, decreased PKCε, but no changes in PKA or PKC-β levels in the SHR myocardium. This provides direct evidence of in vivo phosphorylation of cTnI-Ser(42/44) (PKC-specific) sites in an animal model of hypertensive heart failure, supporting the hypothesis that PKC phosphorylation of cTnI may be maladaptive and potentially associated with cardiac dysfunction.  相似文献   
133.
Regulator of G protein signaling 2 (RGS2) is a GTPase-activating protein for G(q/11)α and G(i/o)α subunits. RGS2 deficiency is linked to hypertension in mice and humans, although causative mechanisms are not understood. Because endothelial dysfunction and increased peripheral resistance are hallmarks of hypertension, determining whether RGS2 regulates microvascular reactivity may reveal mechanisms relevant to cardiovascular disease. Here we have determined the effects of systemic versus endothelium- or vascular smooth muscle-specific deletion of RGS2 on microvascular contraction and relaxation. Contraction and relaxation of mesenteric resistance arteries were analyzed in response to phenylephrine, sodium nitroprusside, or acetylcholine with or without inhibitors of nitric oxide (NO) synthase or K(+) channels that mediate endothelium-derived hyperpolarizing factor (EDHF)-dependent relaxation. The results showed that deleting RGS2 in vascular smooth muscle had minor effects. Systemic or endothelium-specific deletion of RGS2 strikingly inhibited acetylcholine-evoked relaxation. Endothelium-specific deletion of RGS2 had little effect on NO-dependent relaxation but markedly impaired EDHF-dependent relaxation. Acute, inducible deletion of RGS2 in endothelium did not affect blood pressure significantly. Impaired EDHF-mediated vasodilatation was rescued by blocking G(i/o)α activation with pertussis toxin. These findings indicated that systemic or endothelium-specific RGS2 deficiency causes endothelial dysfunction resulting in impaired EDHF-dependent vasodilatation. RGS2 deficiency enables endothelial G(i/o) activity to inhibit EDHF-dependent relaxation, whereas RGS2 sufficiency facilitates EDHF-evoked relaxation by squelching endothelial G(i/o) activity. Mutation or down-regulation of RGS2 in hypertension patients therefore may contribute to endothelial dysfunction and defective EDHF-dependent relaxation. Blunting G(i/o) signaling might improve endothelial function in such patients.  相似文献   
134.
Mast cells are critical effectors in the development of allergic diseases and in many immunoglobulin E-mediated immune responses. These cells exert their physiological and pathological activities by releasing granules containing histamine, cytokines, chemokines, and proteases, including mast cell-specific chymase and tryptase. Like macrophages and T lymphocytes, mast cells are inflammatory cells, and they participate in the pathogenesis of inflammatory diseases such as cardiovascular complications and metabolic disorders. Recent observations suggested that mast cells are involved in insulin resistance and type 2 diabetes. Data from animal models proved the direct participation of mast cells in diet-induced obesity and diabetes. Although the mechanisms by which mast cells participate in these metabolic diseases are not fully understood, established mast cell pathobiology in cardiovascular diseases and effective mast cell inhibitor medications used in pre-formed obesity and diabetes in experimental models offer hope to patients with these common chronic inflammatory diseases. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   
135.
Yang L  Tada Y  Yamamoto MP  Zhao H  Yoshikawa M  Takaiwa F 《FEBS letters》2006,580(13):3315-3320
RPLKPW is a potent anti-hypertensive peptide designed according to the structure of ovokinin(2-7) (RADHPF). In this study, we generated transgenic rice plants that accumulate the RPLKPW peptide as a fusion protein with the rice storage protein glutelin. The engineered peptide is expressed under the control of endosperm-specific glutelin promoters and specifically accumulates in seeds. Oral administration of either the RPLKPW-glutelin fraction or transgenic rice seeds to spontaneously hypertensive rats (SHRs) significantly reduced systolic blood pressures. These results suggest the possible application of transgenic rice seed as a nutraceutical delivery system and specifically for administration of active peptides in hypertension.  相似文献   
136.
Pseudohypoaldosteronism type II (PHAII), an autosomal dominant disorder characterized by hypertension, hyperkalemia, and hyperchloremic acidosis, is reportedly due to mutations in WNK1 and WNK4 kinase genes. However, the pathogenesis of the disease remains unknown. Mutations in the WNK1 gene are the deletions in the first intron, which reportedly increases WNK1 mRNA expression. Thus, we generated WNK1 over-expressing stable cell lines using MDCKII cells to model the distal nephron of PHAII patients. Using these cell lines, we investigated whether increased WNK1 expression might affect paracellular chloride permeability and claudin phosphorylation, since we previously observed an increase in both with a disease-causing mutant WNK4. WNK1 expression in MDCKII cells increased chloride permeability two to threefold. Co-expression of wild-type WNK4 did not further increase WNK1-enhanced chloride permeability. WNK1 expression also induced phosphorylation of endogenous claudin-4 in MDCKII cells, as well as over-expressed claudin-4. Combined, these results suggest that increased WNK1 expression has the same effect on chloride permeability and claudin phosphorylation as the mutant WNK4. Thus, increased chloride shunt may be involved in the pathogenesis of PHAII caused by WNK1 mutations.  相似文献   
137.
138.
The adrenal gland contains a well-organized network of blood vessels, and adrenocortical cells are situated in close proximity to endothelial cells. Recently, several new mechanisms have been characterized that control the release of aldosterone by adrenocortical cells, including the involvement of endothelial-cell-derived factors. Interestingly, a CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), which is necessary for adrenal development, has been linked to aldosterone synthesis. We have therefore examined the effects of endothelial-cell-conditioned medium (ECCM), as produced during the incubation of human umbilical vein endothelial cells for 24 h, on the promoter activity and mRNA and protein expression of CITED2 in adrenocortical cells as represented by the NCI-H295R cell line. We have found a dose-dependent effect of ECCM on CITED2 promoter activity; this peaks at 480%. Activation of the CITED2 promoter occurs in parallel to an increase in CITED2 messenger RNA (as quantified by real-time polymerase chain reaction) and protein. The stimulatory effect of ECCM can be reversed by blocking mitogen-activated protein kinase activity with the MEK1-inhibitor PD98059. We conclude that products secreted by endothelial cells control not only steroidogenesis, but also factors that are important for adrenocortical development, thereby highlighting the role of cellular interactions within adrenocortical development and physiology. This work was supported by a grant from the Doktor Robert Pfleger-Stiftung, Bamberg, Germany, to H.S.W.  相似文献   
139.
Leaves from four different Ginkgo biloba L. trees (1 and 2 – females; 3 and 4 – males), grown at the same conditions, were collected during a period of 5 months (from June to October, 2007). Water and 12% ethanol extracts were analyzed for total phenolics content, antioxidant activity, phenolic profile, and the potential in vitro inhibitory effects on α-amylase, α-glucosidase, and Angiotensin I-Converting Enzyme (ACE) enzymes related to the management of diabetes and hypertension. The results indicated a significant difference among the trees in all functional benefits evaluated in the leaf extracts and also found important seasonal variation related to the same functional parameters. In general, the aqueous extracts had higher total phenolic content than the ethanolic extracts. Also, no correlation was found between total phenolics and antioxidant activity. In relation to the ACE inhibition, only ethanolic extracts had inhibitory activity.  相似文献   
140.

Background

Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF.

Methods

Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats.

Results

CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-α, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-α and L-FABP.

Conclusions and general significance

Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号