排序方式: 共有60条查询结果,搜索用时 15 毫秒
21.
22.
Sudisha Jogaiah Roopa K. Shivanna Pushpalatha Hosur Gnanaprakash 《Archives Of Phytopathology And Plant Protection》2013,46(4):368-378
Six strains of Plant growth promoting Rhizobacteria (PGPR) were tested for their ability to promote growth and induce resistance in pearl millet against downy mildew disease. All the PGRP strains showed a significant (P < 0.01) increase in growth promotion in laboratory as well as greenhouse conditions. Only two strains of Pseudomonas spp., UOM ISR 17 and UOM ISR 23, were capable of protecting pearl millet against downy mildew significantly. Pseudomonas UOM ISR 17 and UOM ISR 23 were able to offer 56.3 and 47.5%, respectively against downy mildew disease. When tested for the time gap needed to offer maximum protection, it was found that both the strains needed four days to offer maximum protection of 73.3% and 59.7%, respectively. While both the Acetobacter strains UOM Ab9 and Ab11 and Azospirillum strain UOM Az3 were able to promote growth and offered disease protection of 39.2, 22.3 and 17.40% respectively, they were not as efficient as the two Pseudomonas strains in protecting pearl millet against downy mildew. Maximum growth promotion was recorded by Pseudomonas spp. UOM ISR 17 with 33.9 cm height which was 44, 45, 42 and 46.8% more in height, fresh weight, dry weight and leaf area over the control which recorded 27 cm height, 8.1 g fresh weight, 2.1 g dry weight and 29 cm2 leaf area, respectively. 相似文献
23.
Kan Zhuo Diana Naalden Silke Nowak Nguyen Xuan Huy Lander Bauters Godelieve Gheysen 《Molecular Plant Pathology》2019,20(3):346-355
C-type lectins (CTLs), a class of multifunctional proteins, are numerous in nematodes. One CTL gene, Mg01965, shown to be expressed in the subventral glands, especially in the second-stage juveniles of the root-knot nematode Meloidogyne graminicola, was further analysed in this study. In vitro RNA interference targeting Mg01965 in the preparasitic juveniles significantly reduced their ability to infect host plant roots. Immunolocalizations showed that Mg01965 is secreted by M. graminicola into the roots during the early parasitic stages and accumulates in the apoplast. Transient expression of Mg01965 in Nicotiana benthamiana and targeting it to the apoplast suppressed the burst of reactive oxygen species triggered by flg22. The CTL Mg01965 suppresses plant innate immunity in the host apoplast, promoting nematode parasitism in the early infection stages. 相似文献
24.
Presymptomatic and accurate diagnosis of Mycosphaerella graminicola leaf blotch is desirable for the disease prediction and the timely application of fungicides. To develop a sensitive PCR assay, four specific primer pairs were designed. They were more specific than three known specific primer pairs. Three of them could detect as little as 0.5 pg M. graminicola DNA in a conventional PCR. A real-time PCR assay was applied for monitoring the disease progression in both inoculated and naturally infected wheat plants using the primer pair ST-rRNA F/R. In inoculated plants, M. graminicola DNA could be detected immediately after inoculation and a steady increase was detected before visible symptoms appeared at 8 days. The rapid growth period took place between 6 and 16 days postinoculation. In the field, the disease progression in the top three leaf layers was followed during the epidemic period. The results were significantly correlated to the disease indices (R=0.8986) and also to the number of pycnidia per leaf (R=0.9227). These suggest that the real-time PCR assay is a reliable approach for the presymptomatic and accurate detection of M. graminicola development in the field. 相似文献
25.
Afiniki B Zarafi AM Emechebe AD Akpa O Alabi 《Archives Of Phytopathology And Plant Protection》2013,46(1):11-17
The effect of various levels of nitrogen (0.0, 30.0, 60.0, 120.0) and phosphorus (0.0, 6.5, 13.0, 36.0) on the incidence and severity of downy mildew of pearl millet and yield of two pearl millet varieties (Zango and GB8375) were studied under field conditions in 2000 and 2001 respectively. Both nitrogen and phosphorus significantly increased incidence and severity of the disease in the two varieties. Grain yield and 1000 grain weight of the varieties also increased with nitrogen and phosphorus levels. 相似文献
26.
A total of 90 isolates of Mycosphaerella graminicola, the cause of septoria tritici leaf blotch of wheat, were tested for DNA polymorphism using 15 decamer random primers. There was a high level of genetic variability among isolates. In 131 random amplified polymorphic DNA (RAPD) fragments, which were produced, 96% were polymorphic. Based on multilocus analysis, 40 different molecular phenotypes were detected. These molecular phenotypes were randomly distributed among sampling sites, suggesting that no clonal structure existed in the population. Cluster analysis showed that the maximum similarity value among isolates was approximately 81% and no identical isolates were detected, indicating that every isolate was a unique genotype. The high degree of DNA polymorphism, the large number of different molecular phenotypes, their random distribution and the results of the cluster analysis all suggested that sexual reproduction has a major role in the genetic structure of M. graminicola in western Canada. The presence of sexual reproduction provides the opportunity for development of new virulent genotypes in the population and suggests that the pathogen may adapt rapidly to any race‐specific sources of resistance. Therefore, when breeding for resistance to M. graminicola, emphasis should be placed on use of non‐race‐specific resistance. 相似文献
27.
Interactions of Pythium oligandrum and four plant‐pathogenic Pythium spp. (P. ultimum, P. vexans, P. graminicola and P. aphanidermatum,) were studied in vitro by (i) video microscopy of hyphal interactions on water agar films, (ii) counting of host and mycoparasite propagules in different regions of opposing colonies on sunflower‐seed extract agar films and (Hi) ability of P. oligandrum to overgrow plates of potato‐dextrose agar previously colonized by Pythium spp. Pythium oligandrum typically coiled round the hyphae of Pythium hosts and penetrated the host hyphae after approximately 50 min from the hyphal coils, causing disruption of host hyphal tips up to 1.2 mm ahead of contact points. The relative growth rates of mycoparasite and host hyphae, timing of penetration and distance (sub‐apical) at which penetration led to host tip disruption were used to assess the potential of mycoparasitism by P. oligandrum to prevent the growth of Pythium hosts. P. aphanidermatum was unique among the ‘host’ Pythium spp. in being largely unaffected by P. oligandrum and in antagonizing the mycoparasite by coiling and penetrating the mycoparasite hyphae. Other host Pythium spp. apparently differed in susceptibility, the most susceptible being P. vexans and P. ultimum, whereas P. graminicola was more resistant. The results are discussed in relation to the role of P. oligandrum as a biocontrol agent, especially for limiting the ability of other Pythium spp. to increase their propagule populations in crop residues. 相似文献
28.
29.
S. Iftikhar S. Asad A. Sultan A. Munir I. Ahmad 《Archives Of Phytopathology And Plant Protection》2013,46(4):305-307
Abstract During a survey of foliar spot of wheat in different agro-ecological wheat production zones, conducted in 2005, Collectotrichum graminicola was found to cause anthracnose in wheat with other foliar diseases like leaf blotch. Pathogenicity has been carried out to fulfill Koch's postulates. 相似文献
30.