全文获取类型
收费全文 | 98篇 |
免费 | 1篇 |
国内免费 | 3篇 |
专业分类
102篇 |
出版年
2022年 | 1篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 4篇 |
2013年 | 14篇 |
2012年 | 13篇 |
2011年 | 16篇 |
2010年 | 12篇 |
2009年 | 1篇 |
2008年 | 2篇 |
2007年 | 4篇 |
2006年 | 1篇 |
2005年 | 4篇 |
2004年 | 3篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有102条查询结果,搜索用时 3 毫秒
11.
Huan-Chen Li Chitra Mani David Kupfer 《Journal of biochemical and molecular toxicology》1993,8(4):195-206
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*. 相似文献
12.
Nobuyuki Fujita Shilpa S. Gogate Kazuhiro Chiba Yoshiaki Toyama Irving M. Shapiro Makarand V. Risbud 《The Journal of biological chemistry》2012,287(47):39942-39953
Recent studies suggest a differential role of prolyl hydroxylase (PHD) isoforms in controlling hypoxia-inducible factor (HIF)-α degradation and activity in nucleus pulposus (NP) cells. However, the regulation and function of PHDs under inflammatory conditions that characterize disc disease are not yet known. Here, we show that in NP cells, TNF-α and IL-1β induce PHD3 expression through NF-κB. Lentiviral delivery of Sh-p65 and Sh-IKKβ confirms that cytokine-mediated PHD3 expression is NF-κB-dependent. It is noteworthy that although both cytokines induce HIF activity, mechanistic studies using Sh-HIF-1α and PHD3 promoter/enhancer constructs harboring well characterized hypoxia response element (HRE) show lack of HIF involvement in cytokine-mediated PHD3 expression. Loss-of-function studies clearly indicate that PHD3 serves as a co-activator of NF-κB signaling activity in NP cells; PHD3 interacts with, and co-localizes with, p65. We observed that when PHD3 is silenced, there is a significant decrease in TNF-α-induced expression of catabolic markers that include ADAMTS5, syndecan4, MMP13, and COX2, and at the same time, there is restoration of aggrecan and collagen type II expression. It is noteworthy that hydroxylase function of PHDs is not required for mediating cytokine-dependent gene expression. These findings show that by enhancing the activity of inflammatory cytokines, PHD3 may serve a critical role in degenerative disc disease. 相似文献
13.
Mariapia Vairetti Andrea Ferrigno Vittoria RizzoGiulia Ambrosi Alberto BianchiPlinio Richelmi Fabio BlandiniMarie-Therese Armentero 《生物化学与生物物理学报:疾病的分子基础》2012,1822(2):176-184
In Parkinson's disease (PD), aside from the central lesion, involvement of visceral organs has been proposed as part of the complex clinical picture of the disease. The issue is still poorly understood and relatively unexplored. In this study we used a classic rodent model of nigrostriatal degeneration, induced by the intrastriatal injection of 6-hydroxydopamine (6-OHDA), to investigate whether and how a PD-like central dopaminergic denervation may influence hepatic functions. Rats received an intrastriatal injection of 6-OHDA or saline (sham), and blood, cerebrospinal fluid, liver and brain samples were obtained for up to 8 weeks after surgery. Specimens were analyzed for changes in cytokine and thyroid hormone levels, as well as liver mitochondrial alterations. Hepatic mitochondria isolated from animals bearing extended nigrostriatal lesion displayed increased ROS production, while membrane potential (ΔΨ) and ATP production were significantly decreased. Reduced ATP production correlated with nigral neuronal loss. Thyroid hormone levels were significantly increased in serum of PD rats compared to sham animals while steady expression of selected cytokines was detected in all groups. Hepatic enzyme functions were comparable in all animals. Our study indicates for the first time that in a rodent model of PD, hepatic mitochondria dysfunctions arise as a consequence of nigrostriatal degeneration, and that thyroid hormone represents a key interface in this CNS-liver interaction. Liver plays a fundamental detoxifying function and a better understanding of PD-related hepatic mitochondrial alterations, which might further promote neurodegeneration, may represent an important step for the development of novel therapeutic strategies. 相似文献
14.
Benjamin E. Blass Pravin Iyer Magid Abou-Gharbia Wayne E. Childers John C. Gordon Mercy Ramanjulu George Morton Premkumar Arumugam Joshodeep Boruwa John Ellingboe Sayan Mitra Rajashekar Reddy Nimmareddy Shalini Paliwal Jamallamudi Rajasekhar Savithiri Shivakumar Pratima Srivastava Raghuram S. Tangirala Konda Venkataramanaiah L. Krishnakanth Reddy 《Bioorganic & medicinal chemistry letters》2018,28(13):2270-2274
The synthesis of steroid hormones is critical to human physiology and improper regulation of either the synthesis of these key molecules or activation of the associated receptors can lead to disease states. This has led to intense interest in developing compounds capable of modulating the synthesis of steroid hormones. Compounds capable of inhibiting Cyp19 (Aromatase), a key enzyme in the synthesis of estrogens, have been successfully employed as breast cancer therapies, while inhibitors of Cyp17 (17α-hydroxylase-17,20-lyase), a key enzyme in the synthesis of glucocorticoids, mineralocorticoids and steroidal sex hormones, are a key component of prostate cancer therapy. Inhibition of CYP17 has also been suggested as a possible target for the treatment of Cushing Syndrome and Metabolic Syndrome. We have identified two novel series of stilbene based CYP17 inhibitors and demonstrated that exemplary compounds in these series have pharmacokinetic properties consistent with orally delivered drugs. These findings suggest that compounds in these classes may be useful for the treatment of diseases and conditions associated with improper regulation of glucocorticoids synthesis and glucocorticoids receptor activation. 相似文献
15.
Guiqi Ren Song Li Hanbing Zhong Shuo Lin 《The Journal of biological chemistry》2013,288(31):22451-22459
The primary pathological hallmark of Parkinson disease (PD) is the profound loss of dopaminergic neurons in the substantia nigra pars compacta. To facilitate the understanding of the underling mechanism of PD, several zebrafish PD models have been generated to recapitulate the characteristics of dopaminergic (DA) neuron loss. In zebrafish studies, tyrosine hydroxylase 1 (th1) has been frequently used as a molecular marker of DA neurons. However, th1 also labels norepinephrine and epinephrine neurons. Recently, a homologue of th1, named tyrosine hydroxylase 2 (th2), was identified based on the sequence homology and subsequently used as a novel marker of DA neurons. In this study, we present evidence that th2 co-localizes with serotonin in the ventral diencephalon and caudal hypothalamus in zebrafish embryos. In addition, knockdown of th2 reduces the level of serotonin in the corresponding th2-positive neurons. This phenotype can be rescued by both zebrafish th2 and mouse tryptophan hydroxylase 1 (Tph1) mRNA as well as by 5-hydroxytryptophan, the product of tryptophan hydroxylase. Moreover, the purified Th2 protein has tryptophan hydroxylase activity comparable with that of the mouse TPH1 protein in vitro. Based on these in vivo and in vitro results, we conclude that th2 is a gene encoding for tryptophan hydroxylase and should be used as a marker gene of serotonergic neurons. 相似文献
16.
17.
Scale of classification based on biochemical markers in mussels: application to pollution monitoring in European coasts 总被引:1,自引:0,他引:1
A battery of biochemical parameters is used to evaluate the response of mussels to a contaminated coastal environment. In the European BIOMAR programme, a multimarker approach was developed, establishing a scale for the classification of the water quality in European coastal sites. AChE activity is highly sensitive to organophosphorus and carbamate insecticides but also to heavy metals. Catalase activity and lipid oxidation (evaluated as MDA) are markers of oxidative stress, GST activity is related to the conjugation of organic compounds and BPH activity is a marker of planar compounds (e.g. PAHs). These parameters were measured either in gills (AChE, GST) or digestive gland (BPH, GST, CAT, MDA). Contamination levels were estimated by measurement of PAHs and heavy metals in animals. For each biomarker, a discriminatory factor was calculated (maximum variation range/confidence interval) and a response index was allocated. For each site, a global response index was calculated as the sum of the response index of each of the five biomarkers. As a result of our calculation method, the quality of the coastal environment at each site can be classified with a five level scale. Mussels were collected during five cruises in 1995-1996 on the Baltic and Mediterranean coasts. The results show that water quality ranged from class 1 (clean areas in some sites of the French Riviera, Spanish Costa Brava and the Baltic coast) to class 5 (high pollution in main harbours, e.g. Kiel and Toulon). Some areas fall into class 4, e.g. Carteau, Cortiou, Barcelona, Warnemunde, Swinemunde, Ebro delta. The global Biomarker Index was positively correlated with the level of PAHs in mussels in Baltic transects. A number of other contaminants or stressors may be present in the marine environment and the Biomarker Index appeared to be relevant to classify coastal environmental pollution. 相似文献
18.
19.
Pimchai Chaiyen 《Archives of biochemistry and biophysics》2010,493(1):62-44502
2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (MHPCO) and 5-pyridoxic acid oxygenase are flavoenzymes catalyzing an aromatic hydroxylation and a ring-cleavage reaction. Both enzymes are involved in biodegradation of vitamin B6 in bacteria. Oxygen-tracer experiments have shown that the enzymes are monooxygnases since only one atom of molecular oxygen is incorporated into the products. Kinetics of MHPCO has shown that the enzyme is similar to single-component flavoprotein hydroxylases in that the binding of MHPC is required prior to the flavin reduction by NADH, and C4a-hydroperoxy-FAD and C4a-hydroxy-FAD are found as intermediates. Investigation on the protonation status of the substrate upon binding to the enzyme has shown that only the tri-ionic form of MHPC is bound at the MHPCO active site. Using a series of FAD analogues with substituents at the 8-position of the isoalloxazine ring, the oxygenation of MHPC by the C4a-hydroperoxy-FAD was shown to occur via an electrophilic aromatic substitution mechanism. Recently, the X-ray structures of MHPCO and a complex of MHPC-MHPCO at 2.1 Å have been reported and show the presence of nine water molecules in the enzyme active site. Based on structural data, a few residues, Tyr82, Tyr223, Arg181, were suggested to be important for catalysis of MHPCO. 相似文献
20.
A survey to evaluate the impact of organic contaminants on the mussel Mytilus galloprovincialis in the Venice Lagoon, Italy was carried out in May 1993. M. galloprovincialis were sampled from putative moderately contaminated (Alberoni, Lio Grande, Crevan), urban (Salute) and industrial (CVE) sites in the Venice Lagoon, and from a clean reference site (Plataforma) in the adjacent Adriatic Sea. Measurements comprised (i) whole-tissue body burdens of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and other organochlorines (DDTs, hexachlorocyclohexanes and hexachlorobenzene); and (ii) digestive gland microsomal cytochrome P450 (CYP)-dependent monooxygenase system (i.e. total CYP and cytochrome P4501A (CYP1A)-immunopositive protein levels, benzo(a)pyrene hydroxylase (BPH) activity) as a specific biomarker of impact by organic contaminants. Chemical analysis identified a contaminant gradient with Plataforma as the cleanest and CVE followed by Salute as the most contaminated extremes. No elevation of total CYP content or CYP1A-immunopositive protein level was seen at any of the lagoon sites compared with Plataforma. In contrast, BPH activity and BPH turnover (i.e. BPH activity per amount total CYP) were respectively 1- and 2.5-fold higher at CVE than Plataforma (P < 0.05), and indicated to be higher (up to 1-fold) at all the other lagoon sites compared with Plataforma. Correlation was seen between BPH activity and tissue levels of total aliphatic hydrocarbons (r = 0.94-0.98), but not between the former and total PAHs or PCBs. The results are consistent with other studies in the area and indicate greatest biological impact of contaminants was at CVE followed by the other lagoon sites, with a possible genotoxic role for the elevated BPH activity in the formation of bulky DNA-adducts. 相似文献