首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2279篇
  免费   41篇
  国内免费   44篇
  2022年   15篇
  2021年   19篇
  2020年   19篇
  2019年   24篇
  2018年   32篇
  2017年   23篇
  2016年   19篇
  2015年   53篇
  2014年   106篇
  2013年   123篇
  2012年   61篇
  2011年   142篇
  2010年   94篇
  2009年   184篇
  2008年   154篇
  2007年   157篇
  2006年   137篇
  2005年   118篇
  2004年   120篇
  2003年   68篇
  2002年   52篇
  2001年   36篇
  2000年   22篇
  1999年   41篇
  1998年   42篇
  1997年   33篇
  1996年   27篇
  1995年   32篇
  1994年   44篇
  1993年   19篇
  1992年   21篇
  1991年   27篇
  1990年   13篇
  1989年   16篇
  1988年   19篇
  1987年   21篇
  1986年   10篇
  1985年   19篇
  1984年   20篇
  1983年   25篇
  1982年   26篇
  1981年   25篇
  1980年   13篇
  1979年   24篇
  1978年   12篇
  1977年   14篇
  1976年   13篇
  1974年   7篇
  1973年   5篇
  1972年   6篇
排序方式: 共有2364条查询结果,搜索用时 547 毫秒
91.
Hydrogen cyanide (HCN) in breath has been suggested as a diagnostic tool for cyanide poisoning and for cyanide-producing bacterial infections. To distinguish elevated levels of breath HCN, baseline data are needed. Background levels of HCN were measured in mixed exhaled air from 40 healthy subjects (26 men, 14 women, age 21–61 years; detection limit: 1.5?ppb; median: 4.4?ppb; range <1.5–14?ppb) by near-infrared cavity ring down spectroscopy (CRDS). No correlation was observed with smoking habits, recent meals or age. However, female subjects had slightly higher breath levels of HCN than male subjects. CRDS has not previously been used for this purpose.  相似文献   
92.
The 2/2 hemoglobin of the cyanobacterium Synechococcus sp. PCC 7002, GlbN, coordinates the heme iron with two histidines and exists either with a b heme or with a covalently attached heme. The binding of exogenous ligands displaces the distal histidine and induces a conformational rearrangement involving the reorganization of internal void volumes. The formation of passageways within the resulting conformation is thought to facilitate ligand exchange and play a functional role. Here we monitored the perturbation induced by pressure on the ferric bis-histidine and cyanide-bound states of GlbN using 1H–15N HSQC NMR spectroscopy. We inspected the outcome with a statistical analysis of 170 homologous 2/2 hemoglobin sequences. We found that the compression landscape of GlbN, as represented by the variation of an average chemical shift parameter, was highly sensitive to ligand swapping and heme covalent attachment. Stabilization of rare conformers was observed at high pressures and consistent with cavity redistribution upon ligand binding. In all states, the EF loop was found to be exceptionally labile to pressure, suggesting a functional role as a semi-flexible hinge between the adjacent helices. Finally, coevolved clusters presented a common pattern of compensating pressure responses. The high-pressure dissection combined with protein sequence analysis established locations with volumetric signatures relevant to residual communication of 2/2 hemoglobins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   
93.
Hydrogen sulphide (H2S) is a gaseous signalling molecule that regulates blood flow and pressure. It is synthesised from cysteine via cystathionine β-synthase and cystathionine γ-lyase. We examined whether thiol precursors of H2S, transsulphuration pathway gene variants (CBS-844ins68 and CTH-G1364T) and key B-vitamin cofactors might be critical determinants of hypertension in an elderly Australian population. An elderly Australian retirement village population (n = 228; age 65–96 years, 91 males and 137 females) was assessed for the prevalence of two transsulphuration pathway–related variant genes associated with cysteine synthesis and hence H2S production. Thiols were determined by HPLC, genotypes by PCR and dietary intake by food frequency questionnaire. Homocysteine levels were statistically higher in the hypertensive phenotype (p = 0.0399), but there was no difference for cysteine or glutathione. Using nominal logistic regression, cysteine, CTH-G1364T genotype, dietary synthetic folate and vitamin B6 predicted clinical phenotype (determined as above/below 140/90 mm Hg) and then only in female subjects (p = 0.0239, 0.0178, 0.0249 and 0.0371, respectively). Least-squares regression supports cysteine being highly inversely predictive of diastolic blood pressure: p and r 2 values <0.0001 and 0.082; 0.0409 and 0.046; and <0.0001 and 0.113 for all subjects, males and females, respectively. Additionally, CTH-G1364T genotype predicts diastolic blood pressure in males (p = 0.0217; r 2 = 0.083), but contrasts with observations for females. Overall, analyses, including stepwise regression, suggest cysteine, dietary natural and synthetic folate, vitamins B6 and B12, and both genetic variants (CTH-C1364T and CBS-844ins68) are all aetiologically relevant in the regulation of blood pressure. Hydrogen sulphide is a vasorelaxant gasotransmitter with characteristics similar to nitric oxide. Cysteine and the G1364T and 844ins68 variants of the cystathionine γ-lyase and cystathionine β-synthase genes, respectively, are the biological determinants of H2S synthesis, and all three are shown here to influence the hypertensive phenotype. Additionally, B-vitamin cofactors for these three enzymes may also be important determinants of blood pressure.  相似文献   
94.
Over the past two decades, hydrogen exchange mass spectrometry (HXMS) has achieved the status of a widespread and routine approach in the structural biology toolbox. The ability of hydrogen exchange to detect a range of protein dynamics coupled with the accessibility of mass spectrometry to mixtures and large complexes at low concentrations result in an unmatched tool for investigating proteins challenging to many other structural techniques. Recent advances in methodology and data analysis are helping HXMS deliver on its potential to uncover the connection between conformation, dynamics and the biological function of proteins and complexes. This review provides a brief overview of the HXMS method and focuses on four recent reports to highlight applications that monitor structure and dynamics of proteins and complexes, track protein folding, and map the thermodynamics and kinetics of protein unfolding at equilibrium. These case studies illustrate typical data, analysis and results for each application and demonstrate a range of biological systems for which the interpretation of HXMS in terms of structure and conformational parameters provides unique insights into function. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   
95.
96.
The structure of N i -( N '-Sulfodiaminophosphinyl)- l -ornithine (PSOrn) in complex with the enzyme ornithine transcarbamoylase (OTCase) was recently characterised by Langley et al. [D.B. Langley, M.D. Templeton, B.A. Fields, R.E. Mitchell and C.A. Collyer, J. Biol. Chem., 275 (2000) 20012] using X-ray diffraction techniques. In this work, the interaction of PSOrn with the arginine residues of OTCase is modelled using density functional theory, with an emphasis on characterising the mechanism of binding between PSOrn, an inhibitor, and the enzyme. For the purposes of this study, the interaction of PSO, an analogue of PSOrn (obtained by replacing a (CH 2 ) 3 CH( CO 2 m )( NH 3 + ) side chain by methyl) with one and two arginine (Arg) molecules are investigated. The PSO > (Arg) 2 trimer is found to be strongly bound, by ~171 kJ mol m 1 , due to the presence of four hydrogen bonds in addition to a large ionic interaction between a dinegative PSO 2 m and protonated arginines. The computed geometry is consistent with the X-ray structure and the large binding energy is consistent with the observation that PSOrn is a powerful inhibitor. Furthermore, in agreement with the proposals of Langley et al. , the most stable bound form of PSO is found to be an imino type tautomer. The population analyses that were carried out on PSO suggest that PN, PO, SN and SO bonds, as in a range of other systems, are generally either single or semipolar bonds.  相似文献   
97.
Density Functional Theory (DFT) calculations using gaussian 98 have been performed on hydrogen adsorbed on clusters representing the (110) and (111) surfaces of Cu. Clusters were constructed to model different adsorption sites, and at least two different size clusters were used for each site. On the (111) surface, hydrogen prefers to adsorb in a hollow site, though with the hcp variant being favoured by the adsorption energy, and the fcc alternative by the vibrational frequencies. On the (110) surface, the "fcc" site on a (1 2 2) reconstructed surface is preferred.  相似文献   
98.
The use of a Monte–Carlo formalism in a centrifugal gas process separation simulation provides an efficient predictor of dew-pointing as a function of the imposed radial pressure gradient. Previously, this was done by simply calculating radial pressure and then resorting to a separate equation of state routine for evaluating whether condensation will occur or not. In our model, we incorporate the potential energy associated with rotation of a gas element into the simulation along with molecular interaction terms. This enables us to predict when sufficient nucleation has occurred that condensed material forms—an important limit for stable operation of a gas centrifuge.  相似文献   
99.
Abstract

In this study, various 400 ps molecular dynamics simulations were conducted to determine the stabilizing effect of O-glycosylation on the secondary structural integrity of the design α-loop-α motif, which has the optimal loop length of 7 Gly residues (denoted as N-A16G7A16-C). In general, O-glycosylation stabilizes the structural integrity of the model peptide regardless of the length and position of glycosylation sites because it decreases the opportunity for water molecules to compete for the intramolecular hydrogen bonds. The designed peptide exhibits the highest helicity when residues 11 and 31 are replaced with Ser residues followed by O-linked with 3 galactose residues, representing the “face-to-face” glycosylation near the loop. In this case, the loop exhibits an extended conformation and several new hydrogen bonds are observed between the main chain of the loop and the galactose residues, resulting in decreasing the fluctuation and increasing the stability of the entire peptide. When the glycosylation are made close to the loop, the secondary structural integrity of the α-loop-α motif increases with the number of galactose residues. In addition, “face- to-face” glycosylation increases the structural integrity of this motif to a greater extent than “back-to-back” glycosylation. However, when the glycosylation are created away from the loop and near the N- and C-termini, no general rule is found for the stabilizing effect.  相似文献   
100.
Cyclin-dependent kinase 5 (Cdk5) is a brain-specific membrane-bound protein kinase that is activated by binding to the p35 or p39 activator. Previous studies have focused on p35-Cdk5, and little is known regarding p39-Cdk5. The lack of functional understanding of p39-Cdk5 is due, in part, to the labile property of p39-Cdk5, which dissociates and loses kinase activity in nonionic detergent conditions. Here we investigated the structural basis for the instability of p39-Cdk5. p39 and p35 contain N-terminal p10 regions and C-terminal Cdk5 activation domains (AD). Although p35 and p39 show higher homology in the C-terminal AD than the N-terminal region, the difference in stability is derived from the C-terminal AD. Based on the crystal structures of the p25 (p35 C-terminal region including AD)-Cdk5 complex, we simulated the three-dimensional structure of the p39 AD-Cdk5 complex and found differences in the hydrogen bond network between Cdk5 and its activators. Three amino acids of p35, Asp-259, Asn-266, and Ser-270, which are involved in hydrogen bond formation with Cdk5, are changed to Gln, Gln, and Pro in p39. Because these three amino acids in p39 do not participate in hydrogen bond formation, we predicted that the number of hydrogen bonds between p39 and Cdk5 was reduced compared with p35 and Cdk5. Using substitution mutants, we experimentally validated that the difference in the hydrogen bond network contributes to the different properties between Cdk5 and its activators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号