首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1949篇
  免费   32篇
  国内免费   43篇
  2023年   3篇
  2022年   10篇
  2021年   20篇
  2020年   16篇
  2019年   21篇
  2018年   26篇
  2017年   19篇
  2016年   15篇
  2015年   46篇
  2014年   95篇
  2013年   116篇
  2012年   59篇
  2011年   135篇
  2010年   82篇
  2009年   166篇
  2008年   135篇
  2007年   142篇
  2006年   113篇
  2005年   102篇
  2004年   113篇
  2003年   61篇
  2002年   46篇
  2001年   31篇
  2000年   17篇
  1999年   36篇
  1998年   37篇
  1997年   31篇
  1996年   22篇
  1995年   22篇
  1994年   35篇
  1993年   16篇
  1992年   17篇
  1991年   21篇
  1990年   10篇
  1989年   12篇
  1988年   12篇
  1987年   17篇
  1986年   9篇
  1985年   16篇
  1984年   15篇
  1983年   18篇
  1982年   18篇
  1981年   17篇
  1980年   7篇
  1979年   18篇
  1978年   11篇
  1977年   10篇
  1976年   4篇
  1974年   2篇
  1971年   2篇
排序方式: 共有2024条查询结果,搜索用时 15 毫秒
71.
《Free radical research》2013,47(1-3):89-97
An influence of possible interaction of glutathione peroxidase and cyclooxygenase on the clonogenic survival of epithelial cells exposed in vitro to H2O2 was investigated. Indomethacin served as the inhibitor of cyclooxygenase, and the use of alkaline (7.5) or acidic (6.5) pH combined with controlled supply of glucose modified glutathione peroxidase activity. Indomethacin affected survival of cells exposed to H2O2 in a biphasic manner, enhancing cytotoxicity at lower hydrogen peroxide concentrations, and diminishing it at higher concentrations. The turning point moved gradually to higher concentrations of H2O2 corresponding to the augmented decomposition of hydrogen peroxide caused by increased activity of glutathione peroxidase. The data revealed that both enzymic pathways interact in the presence of H2O2, resulting in the overall cell survival different from that obtained after inhibition of either.  相似文献   
72.
Free radicals generated by chemicals can cause sequence-specific DNA damage and play important roles in mutagenesis and carcinogenesis. Carbamoyl group (CONH 2 ) and its derived groups (CONR 2 ) occur as natural products and synthetic chemical compounds. We have investigated the DNA damage by carbamoyl radicals · (CONH 2 ), one of carbon-centered radicals. Electron spin resonance (ESR) spectroscopic study has demonstrated that carbamoyl radicals were generated from formamide by treatment with H 2 O 2 plus Cu(II), and from azodicarbonamide by treatment with Cu(II). We have investigated sequence specificity of DNA damage induced by carbamoyl radicals using 32 P-labeled DNA fragments obtained from the human c-Ha- ras -1 and p 53 genes. Treatment of double-stranded DNA with carbamoyl radicals induced an alteration of guanine residues, and subsequent treatment with piperidine or Fpg protein led to chain cleavages at 5'-G of GG and GGG sequences. Carbamoyl radicals enhanced Cu(II)/H 2 O 2 -mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in double-stranded DNA more efficiently than that in single-stranded DNA. These results shows that carbamoyl radicals specifically induce hydroxylation of deoxyguanosine at 5' site of GG and GGG sequences in double-stranded DNA.  相似文献   
73.
Abstract

Objectives

Regular intake of green tea associates with lower DNA damage and increased resistance of DNA to oxidant challenge. However, in vitro pro-oxidant effects of green tea have been reported. Both effects could be mediated by hydrogen peroxide (H2O2) which is generated by autoxidation of tea catechins. In large amounts, H2O2 is genotoxic, but low concentrations could activate the redox-sensitive antioxidant response element (ARE) via the Keap-1/Nrf2 redox switch, inducing genoprotective adaptations. Our objective was to test this hypothesis.

Methods

Peripheral lymphocytes from healthy volunteers were incubated for 30 minutes at 37°C in freshly prepared tea solutions (0.005, 0.01, 0.05%w/v (7, 14, 71 µmol/l total catechins) in phosphate buffered saline (PBS), with PBS as control) in the presence and absence of catalase (CAT). H2O2 in tea was measured colorimetrically. Oxidation-induced DNA lesions were measured by the Fpg-assisted comet assay.

Results

H2O2 concentrations in 0.005, 0.01, and 0.05% green tea after 30 minutes at 37°C were, respectively, ~3, ~7, and ~52 µmol/l. Cells incubated in 0.005 and 0.01% tea showed less (P < 0.001) DNA damage compared to control cells. Cells treated with 0.05% green tea showed ~50% (P < 0.001) more DNA damage. The presence of CAT prevented this damage, but did not remove the genoprotective effects of low-dose tea. No significant changes in expression of ARE-associated genes (HMOX1, NRF2, KEAP1, BACH1, and hOGG1) were seen in cells treated with tea or tea + CAT.

Conclusion

Genoprotection by low-dose green tea could be due to direct antioxidant protection by green tea polyphenols, or to H2O2-independent signalling pathways.  相似文献   
74.
Hydrogen sulphide (H2S) is a gaseous signalling molecule that regulates blood flow and pressure. It is synthesised from cysteine via cystathionine β-synthase and cystathionine γ-lyase. We examined whether thiol precursors of H2S, transsulphuration pathway gene variants (CBS-844ins68 and CTH-G1364T) and key B-vitamin cofactors might be critical determinants of hypertension in an elderly Australian population. An elderly Australian retirement village population (n = 228; age 65–96 years, 91 males and 137 females) was assessed for the prevalence of two transsulphuration pathway–related variant genes associated with cysteine synthesis and hence H2S production. Thiols were determined by HPLC, genotypes by PCR and dietary intake by food frequency questionnaire. Homocysteine levels were statistically higher in the hypertensive phenotype (p = 0.0399), but there was no difference for cysteine or glutathione. Using nominal logistic regression, cysteine, CTH-G1364T genotype, dietary synthetic folate and vitamin B6 predicted clinical phenotype (determined as above/below 140/90 mm Hg) and then only in female subjects (p = 0.0239, 0.0178, 0.0249 and 0.0371, respectively). Least-squares regression supports cysteine being highly inversely predictive of diastolic blood pressure: p and r 2 values <0.0001 and 0.082; 0.0409 and 0.046; and <0.0001 and 0.113 for all subjects, males and females, respectively. Additionally, CTH-G1364T genotype predicts diastolic blood pressure in males (p = 0.0217; r 2 = 0.083), but contrasts with observations for females. Overall, analyses, including stepwise regression, suggest cysteine, dietary natural and synthetic folate, vitamins B6 and B12, and both genetic variants (CTH-C1364T and CBS-844ins68) are all aetiologically relevant in the regulation of blood pressure. Hydrogen sulphide is a vasorelaxant gasotransmitter with characteristics similar to nitric oxide. Cysteine and the G1364T and 844ins68 variants of the cystathionine γ-lyase and cystathionine β-synthase genes, respectively, are the biological determinants of H2S synthesis, and all three are shown here to influence the hypertensive phenotype. Additionally, B-vitamin cofactors for these three enzymes may also be important determinants of blood pressure.  相似文献   
75.
Over the past two decades, hydrogen exchange mass spectrometry (HXMS) has achieved the status of a widespread and routine approach in the structural biology toolbox. The ability of hydrogen exchange to detect a range of protein dynamics coupled with the accessibility of mass spectrometry to mixtures and large complexes at low concentrations result in an unmatched tool for investigating proteins challenging to many other structural techniques. Recent advances in methodology and data analysis are helping HXMS deliver on its potential to uncover the connection between conformation, dynamics and the biological function of proteins and complexes. This review provides a brief overview of the HXMS method and focuses on four recent reports to highlight applications that monitor structure and dynamics of proteins and complexes, track protein folding, and map the thermodynamics and kinetics of protein unfolding at equilibrium. These case studies illustrate typical data, analysis and results for each application and demonstrate a range of biological systems for which the interpretation of HXMS in terms of structure and conformational parameters provides unique insights into function. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   
76.
The structure of N i -( N '-Sulfodiaminophosphinyl)- l -ornithine (PSOrn) in complex with the enzyme ornithine transcarbamoylase (OTCase) was recently characterised by Langley et al. [D.B. Langley, M.D. Templeton, B.A. Fields, R.E. Mitchell and C.A. Collyer, J. Biol. Chem., 275 (2000) 20012] using X-ray diffraction techniques. In this work, the interaction of PSOrn with the arginine residues of OTCase is modelled using density functional theory, with an emphasis on characterising the mechanism of binding between PSOrn, an inhibitor, and the enzyme. For the purposes of this study, the interaction of PSO, an analogue of PSOrn (obtained by replacing a (CH 2 ) 3 CH( CO 2 m )( NH 3 + ) side chain by methyl) with one and two arginine (Arg) molecules are investigated. The PSO > (Arg) 2 trimer is found to be strongly bound, by ~171 kJ mol m 1 , due to the presence of four hydrogen bonds in addition to a large ionic interaction between a dinegative PSO 2 m and protonated arginines. The computed geometry is consistent with the X-ray structure and the large binding energy is consistent with the observation that PSOrn is a powerful inhibitor. Furthermore, in agreement with the proposals of Langley et al. , the most stable bound form of PSO is found to be an imino type tautomer. The population analyses that were carried out on PSO suggest that PN, PO, SN and SO bonds, as in a range of other systems, are generally either single or semipolar bonds.  相似文献   
77.
Density Functional Theory (DFT) calculations using gaussian 98 have been performed on hydrogen adsorbed on clusters representing the (110) and (111) surfaces of Cu. Clusters were constructed to model different adsorption sites, and at least two different size clusters were used for each site. On the (111) surface, hydrogen prefers to adsorb in a hollow site, though with the hcp variant being favoured by the adsorption energy, and the fcc alternative by the vibrational frequencies. On the (110) surface, the "fcc" site on a (1 2 2) reconstructed surface is preferred.  相似文献   
78.
The use of a Monte–Carlo formalism in a centrifugal gas process separation simulation provides an efficient predictor of dew-pointing as a function of the imposed radial pressure gradient. Previously, this was done by simply calculating radial pressure and then resorting to a separate equation of state routine for evaluating whether condensation will occur or not. In our model, we incorporate the potential energy associated with rotation of a gas element into the simulation along with molecular interaction terms. This enables us to predict when sufficient nucleation has occurred that condensed material forms—an important limit for stable operation of a gas centrifuge.  相似文献   
79.
Abstract

In this study, various 400 ps molecular dynamics simulations were conducted to determine the stabilizing effect of O-glycosylation on the secondary structural integrity of the design α-loop-α motif, which has the optimal loop length of 7 Gly residues (denoted as N-A16G7A16-C). In general, O-glycosylation stabilizes the structural integrity of the model peptide regardless of the length and position of glycosylation sites because it decreases the opportunity for water molecules to compete for the intramolecular hydrogen bonds. The designed peptide exhibits the highest helicity when residues 11 and 31 are replaced with Ser residues followed by O-linked with 3 galactose residues, representing the “face-to-face” glycosylation near the loop. In this case, the loop exhibits an extended conformation and several new hydrogen bonds are observed between the main chain of the loop and the galactose residues, resulting in decreasing the fluctuation and increasing the stability of the entire peptide. When the glycosylation are made close to the loop, the secondary structural integrity of the α-loop-α motif increases with the number of galactose residues. In addition, “face- to-face” glycosylation increases the structural integrity of this motif to a greater extent than “back-to-back” glycosylation. However, when the glycosylation are created away from the loop and near the N- and C-termini, no general rule is found for the stabilizing effect.  相似文献   
80.
Cyclin-dependent kinase 5 (Cdk5) is a brain-specific membrane-bound protein kinase that is activated by binding to the p35 or p39 activator. Previous studies have focused on p35-Cdk5, and little is known regarding p39-Cdk5. The lack of functional understanding of p39-Cdk5 is due, in part, to the labile property of p39-Cdk5, which dissociates and loses kinase activity in nonionic detergent conditions. Here we investigated the structural basis for the instability of p39-Cdk5. p39 and p35 contain N-terminal p10 regions and C-terminal Cdk5 activation domains (AD). Although p35 and p39 show higher homology in the C-terminal AD than the N-terminal region, the difference in stability is derived from the C-terminal AD. Based on the crystal structures of the p25 (p35 C-terminal region including AD)-Cdk5 complex, we simulated the three-dimensional structure of the p39 AD-Cdk5 complex and found differences in the hydrogen bond network between Cdk5 and its activators. Three amino acids of p35, Asp-259, Asn-266, and Ser-270, which are involved in hydrogen bond formation with Cdk5, are changed to Gln, Gln, and Pro in p39. Because these three amino acids in p39 do not participate in hydrogen bond formation, we predicted that the number of hydrogen bonds between p39 and Cdk5 was reduced compared with p35 and Cdk5. Using substitution mutants, we experimentally validated that the difference in the hydrogen bond network contributes to the different properties between Cdk5 and its activators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号