首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1953篇
  免费   32篇
  国内免费   43篇
  2023年   5篇
  2022年   12篇
  2021年   20篇
  2020年   16篇
  2019年   21篇
  2018年   26篇
  2017年   19篇
  2016年   15篇
  2015年   46篇
  2014年   95篇
  2013年   116篇
  2012年   59篇
  2011年   135篇
  2010年   82篇
  2009年   166篇
  2008年   135篇
  2007年   142篇
  2006年   113篇
  2005年   102篇
  2004年   113篇
  2003年   61篇
  2002年   46篇
  2001年   31篇
  2000年   17篇
  1999年   36篇
  1998年   37篇
  1997年   31篇
  1996年   22篇
  1995年   22篇
  1994年   35篇
  1993年   16篇
  1992年   17篇
  1991年   21篇
  1990年   10篇
  1989年   12篇
  1988年   12篇
  1987年   17篇
  1986年   9篇
  1985年   16篇
  1984年   15篇
  1983年   18篇
  1982年   18篇
  1981年   17篇
  1980年   7篇
  1979年   18篇
  1978年   11篇
  1977年   10篇
  1976年   4篇
  1974年   2篇
  1971年   2篇
排序方式: 共有2028条查询结果,搜索用时 15 毫秒
21.
The purpose of this study was to quantify the effects of extracellularly generated partially reduced oxygen species on active sodium (NA+) transport across the ventral toad skin, a well-studied epithelium. Sections of skin from decapitated toads were mounted in an Ussing chamber, bathed on both sides with electrolyte solution containing 500 μM xanthine and bubbled continuously with room air. The tissues were short-circuited, and short circuit current (Isc) and tissue resistance (Rt were monitored continuously with an automatic voltage clamp apparatus. Fifteen mU/ml of xanthine oxidase (XO), either purchased from Calbiochem or purified from cream, were instilled in either the apical (mucosal) or basolateral (serosal) baths at t = 0 and T = 10 min. Hydrogen peroxide (H2O2) concentrations increased to 200 μM within the first 20 min and then decreased, reaching a value of 40 μM by 60 min. Mean [H2O2] was 90 μM. Instillation of XO in the apical bath resulted in a large decrease in Isc and an increase in Rt, their values being 43% and 160% of their corresponding controls 85 min after the first instillation. Addition of superoxide dismutase and catalase completely prevented these changes. Instillation of XO in the basolateral bath had no effect. Similar physiological responses were obtained using the Calbiochem XO or the purified XO, which contained no measurable protease activity. It was concluded that extracellularly generated partially reduced oxygen species may interfere with active Na+ transport by possibly damaging apical Na+ channel proteins.  相似文献   
22.
The role of histidine on DNA breakage induced by hydrogen peroxide (H2O2) and ferric ions or by H2O2 and cupric ions was studied on purified DNA. L-histidine slightly reduced DNA breakage by H2O2 and Fe3+ but greatly inhibited DNA breakage by H2O2 and Cu2+. However, only when histidine was present, the addition of EDTA to H2O2 and Fe3+ exhibited a bimodal dose response curve depending on the chelator metal ratio. The enhancing effect of histidine on the rate of DNA degradation by H2O2 was maximal at a chelator metal ratio between 0.2 and 0.5, and was specific for iron. When D-histidine replaced L-histidine, the same pattern of EDTA dose response curve was observed. Superoxide dismutase greatly inhibited the rate of DNA degradation induced by H2O2, Fe3+, EDTA and L-histidine involving the superoxide radical.

These studies suggest that the enhancing effect of histidine on the rate of DNA degradation by H2O2 and Fe3+ is mediated by an oxidant which could be a ferrous-dioxygen-ferric chelate complex or a chelate-ferryl ion.  相似文献   
23.
A natural abundance hydrogen stable isotope technique was used to study seasonal changes in source water utilization and water movement in the xylem of dimorphic root systems and stem bases of several woody shrubs or trees in mediterranean-type ecosystems of south Western Australia. Samples collected from the native treeBanksia prionotes over 18 months indicated that shallow lateral roots and deeply penetrating tap (sinker) roots obtained water of different origins over the course of a winter-wet/summer-dry annual cycle. During the wet season lateral roots acquired water mostly by uptake of recent precipitation (rain water) contained within the upper soil layers, and tap roots derived water from the underlying water table. The shoot obtained a mixture of these two water sources. As the dry season approached dependence on recent rain water decreased while that on ground water increased. In high summer, shallow lateral roots remained well-hydrated and shoots well supplied with ground water taken up by the tap root. This enabled plants to continue transpiration and carbon assimilation and thus complete their seasonal extension growth during the long (4–6 month) dry season. Parallel studies of other native species and two plantation-grown species ofEucalyptus all demonstrated behavior similar to that ofB. prionotes. ForB. prionotes, there was a strong negative correlation between the percentage of water in the stem base of a plant which was derived from the tap root (ground water) and the amount of precipitation which fell at the site. These data suggested that during the dry season plants derive the majority of the water they use from deeper sources while in the wet season most of the water they use is derived from shallower sources supplied by lateral roots in the upper soil layers. The data collected in this study supported the notion that the dimorphic rooting habit can be advantageous for large woody species of floristically-rich, open, woodlands and heathlands where the acquisition of seasonally limited water is at a premium.  相似文献   
24.
Chilling ofArabidopsis thaliana (L.) Heynh. callus tissue to 4 °C led to conditions of oxidative stress, as indicated by increased levels of the products of peroxidative damage to cell membranes. Cellular H2O2 was also observed to increase initially upon chilling but by day 8 cellular levels had declined to below control levels. Although levels of catalase activity remained similar to those in unchilled tissue, activity of ascorbate peroxidase increased between days 4 and 8 of chilling to 4 °C. In callus held at 23 °C, levels of reduced glutathione remained static whereas they rose in callus held at 4 °C. Levels of oxidised glutathione were initially low but increased significantly by day 4 in the chilled callus. At 23 °C, however, levels of oxidised glutathione remained low. Between days 1 and 3 at 4 °C, levels of glutathione reductase activity increased but by day 8 glutathione reductase activity was similar to that in cells held at 23 °C. Exposure of callus to abscisic acid at 23 °C also led to increased activities of ascorbate peroxidase and glutathione reductase.Abbreviations ABA abscisic acid - GSH reduced glutathione - GSSG oxidised glutathione - TTC 2,35-triphenyltetrazolium chloride This work is supported by a grant from the Biotechnology and Biological Sciences Research Council.  相似文献   
25.
Superoxide generation by polymorphonuclear leukocytes (PMNs) in suspension, or adherent to glass or plastic, after stimulation with /V-formylmethionyl-leucyl-phenylalanine or phorbol myristate acetate was measured by cytochromec reduction and spin trapping. Amounts of superoxide generated by adherent PM Ns were inversely related to cell density. The generation of hydrogen peroxide was also inhibited at higher cell densities. In contrast to adherent cells, superoxide released by PMNs in suspension linearly increased with respect to cell number over a wider range. Microscopic observation indicated that the number of cells in mutual contact increased rapidly at cell densities higher than 4 × 104 cells/cm2, and inhibition of superoxide became apparent at higher cell densities. Mediators which could be released by PMNs, such as NO and adenosine, were not the cause of inhibition. Thesedatu suggest that mutual contact of PMNs suppresses their generation of superoxide. Survival rates of PMNs after stimulation increased at higher densities, indicating that the mutual contact-induced inhibition of superoxide generation by PMNs may be physiologically relevant at sites of inflammation.  相似文献   
26.
Abstract: Hyperthermophiles are a recently discovered group of microorganisms that grow at and above 90°C. They currently comprise over 20 different genera, and except for two novel bacteria, all are classified as Archaea. The majority of these organisms are obligately anaerobic heterotrophs that reduce elemental sulfur (S°) to H2S. The best studied from a biochemical perspective are the archaeon, Pyrococcus furiosus , and the bacterium, Thermotoga maritima , both of which are saccharolytic. P. furiosus is thought to contain a new type of Entner-Doudoroff pathway for the conversion of carbohydrates ultimately to acetate, H2 and CO2. The pathway is independent of nicotinamide nucleotides and involves novel types of ferredoxin-linked oxidoreductases, one of which has tungsten, a rarely used element, as a prosthetic group. The only site of energy conservation is at the level of acetyl CoA, which in the presence of ADP and phosphate is converted to acetate and ATP in a single step. In contrast, T. maritima utilizes a conventional Embden-Meyerhof pathway for sugar oxidation. P. furiosus also utilizes peptides as a sole carbon and energy source. Amino acid oxidation is thought to involve glutamate dehydrogenase together with at least three types of novel ferredoxin-linked oxidoreductases which catalyze the oxidation of 2-ketoglutarate, aryl pyruvates and formaldehyde. One of these enzymes also utilizes tungsten. In P. furiosus , virtually all of the reductant that is generated during the catabolism of both carbohydrates and peptides is channeled to a cytoplasmic hydrogenase. This enzyme is now termed sulhydrogenase, as it reduces both protons to H2 and S°(or polysulfide) to H2S. S° reduction appears to lead to the conservation of energy in P. furiosus but not in T. maritima , although the mechanism by which this occurs is not known.  相似文献   
27.
Summary Continuing a line of investigations on methods for formation and growth of high-quality crystals of peptides, the glycylglycine sequence has been crystallized by evaporation methods as a salt with 1,5-naphthalenedisulfonic acid. The structure of the peptide is highly extended, and is conformationally quite similar to the structures which have been characterized for other zwitterionic and salt forms of this sequence. Thus, crystallization as a salt with this sulfonic acid has imposed no undue influence upon the molecular conformation. These results offer further indication that the preparation of peptide sulfonate salts, particularly with arene templates, may have broad general utility for crystallization of interesting sequences which until now have not been approachable in their zwitterionic forms.  相似文献   
28.
The oxidative stress response in Bacillus subtilis   总被引:9,自引:0,他引:9  
Abstract Bacillus subtilis undergoes a typical bacterial stress response when exposed to low concentrations (0.1 mM) of hydrogen peroxide. Protection is thereby induced against otherwise lethal, challenge concentrations (10 mM) of this oxidant and a number of proteins are induced including the scavenging enzymes, catalase and alkyl hydroperoxide reductase, and a putative DNA binding and protecting protein. Induced protection against higher concentrations (10–30 mM) of hydrogen peroxide is eliminated in a catalase-deficient mutant. Both RecA and Spo0A influence the basal but not the induced resistance to hydrogen peroxide. A regulatory mutation has been characterized that affects the inducible phenotype and is constitutively resistant to high concentrations of hydrogen peroxide. This mutant constitutively overexpresses the proteins induced by hydrogen peroxide in the wild-type. The resistance of spores to hydrogen peroxide is partly attributable to binding of small acid soluble proteins by the spore DNA and partly to a second step which coincides with the depletion of the NADH pool, which may inhibit the generation of hydroxyl radicals from hydrogen peroxide.  相似文献   
29.
Cytochrome P450 can undergo inactivation following monooxygenase reactions in liver microsomes of untreated, phenobarbital and 3-methylcholanthrene-treated rats and rabbits. The acceleration of cytochrome P450 loss in the presence of catalase inhibitors (sodium azide, hydroxylamine) indicates that hydrogen peroxide is involved in hemoprotein degradation. It was revealed that cytochrome P450 is inactivated mainly by H2O2 formed through peroxy complex breakdown, whereas H2O2 formed via the dismutation of superoxide anions produces a slight inactivating effect. The hydrogen peroxide added outside or formed by a glucose-glucose oxidase system has less of an inactivating effect than H2O2 produced within the cytochrome P450 active center. Self-inactivation of cytochrome P450 during oxygenase reactions is highly specific. Other components of the monooxygenase system, such as cytochrome b5, NADH- and NADPH-specific flavorproteins, undergo no inactivation. The alterations in phospholipid content and in the rate of lipid peroxidation were not observed as well. The inactivation of cytochrome P450 by H2O2 is the result of heme loss or destruction without cytochrome P420 formation. Such. a mechanism operates with different substrates and cytochrome P450 species catalyzing the partially coupled monooxygenase reactions.  相似文献   
30.
Benzene is strongly suspected of being an animal and human carcinogen, but the mechanisms by which it induces tumors of lymphoid and hematopoietic organs are unknown. Production of active oxygen species from benzene metabolites [hydroquinone (HQ), catechol and 1,2,4-benzenetriol (1,2,4-BT) and related polyphenols (resorcinol, pyrogallol and phloroglucinol) are investigated. Pyrogallol and 1,2,4-BT can produce H2O2, O 2 and·OH simultaneously, and have powerful mutagenic potential. Resorcinol and phloroglucinol cannot produce all of the active oxygen species, and show no mutagenic effects. Catechol can produce H2O2, but cannot produce O 2 and·OH, and has no mutagenic activity. These data strongly support the hypothesis that benzene metabolites can cause mutagenicity via the generation of oxygen radicals. Although HQ produces H2O2 only, and less than produced by pyrogallol and 1,2,4-BT, the mutagenicity of HQ is higher. The results indicate that HQ may act via another mechanism to cause mutagenicity. In the presence of trace metal ions, the reactivity of polyphenols is increased. The biological significance of these phenomena are investigated and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号