首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4188篇
  免费   428篇
  国内免费   205篇
  4821篇
  2024年   12篇
  2023年   101篇
  2022年   87篇
  2021年   150篇
  2020年   152篇
  2019年   196篇
  2018年   149篇
  2017年   160篇
  2016年   179篇
  2015年   169篇
  2014年   208篇
  2013年   286篇
  2012年   152篇
  2011年   209篇
  2010年   158篇
  2009年   226篇
  2008年   224篇
  2007年   240篇
  2006年   194篇
  2005年   173篇
  2004年   136篇
  2003年   132篇
  2002年   98篇
  2001年   114篇
  2000年   98篇
  1999年   102篇
  1998年   65篇
  1997年   81篇
  1996年   66篇
  1995年   59篇
  1994年   56篇
  1993年   49篇
  1992年   53篇
  1991年   31篇
  1990年   36篇
  1989年   35篇
  1988年   28篇
  1987年   33篇
  1986年   19篇
  1985年   12篇
  1984年   17篇
  1983年   9篇
  1982年   10篇
  1981年   11篇
  1980年   11篇
  1979年   10篇
  1978年   8篇
  1977年   6篇
  1976年   3篇
  1972年   3篇
排序方式: 共有4821条查询结果,搜索用时 0 毫秒
71.
In many ecological situations, resources are difficult to find but become more apparent to nearby searchers after one of their numbers discovers and begins to exploit them. If the discoverer cannot monopolize the resources, then others may benefit from joining the discoverer and sharing their discovery. Existing theories for this type of conspecific attraction have often used very simple rules for how the decision to join a discovered resource patch should be influenced by the number of individuals already exploiting that patch. We use a mechanistic, spatially explicit model to demonstrate that individuals should not necessarily simply join patches more often as the number of individuals exploiting the patch increases, because those patches are likely to be exhausted soon or joining them will intensify future local competition. Furthermore, we show that this decision should be sensitive to the nature of the resource patches, with individuals being more responsive to discoveries in general and more tolerant of larger numbers of existing exploiters on a patch when patches are resource-rich and challenging to locate alone. As such, we argue that this greater focus on underlying joining mechanisms suggests that conspecific attraction is a more sophisticated and flexible tactic than currently appreciated.  相似文献   
72.
The thermal range for viability is quite variable among Drosophila species and it has long been known that these variations are correlated with geographic distribution: temperate species are on average more cold tolerant but more heat sensitive than tropical species. At both ends of their viability range, sterile males have been observed in all species investigated so far. This symmetrical phenomenon restricts the temperature limits within which permanent cultures can be kept in the laboratory. Thermal heat sterility thresholds are very variable across species from 23 degrees C in heat sensitive species up to 31 degrees C in heat tolerant species. In Drosophila melanogaster, genetic variations are observed among geographic populations. Tropical populations are more tolerant to heat induced sterility and recover more rapidly than temperate ones. A genetic analysis revealed that about 50% of the difference observed between natural populations was due to the Y chromosome. Natural populations have not reached a selection limit, however: thermal tolerance was still increased by keeping strains at a high temperature, close to the sterility threshold. On the low temperature side, a symmetrical reverse phenomenon seems to exist: temperate populations are more tolerant to cold than tropical ones. Compared to Mammals, drosophilids exhibit two major differences: first, male sterility occurs not only at high temperature, but also at a low temperature; second, sterility thresholds are not evolutionarily constrained, but highly variable. Altogether, significant and sometimes major genetic variations have been observed between species, between geographic races of the same species, and even between strains kept in the laboratory under different thermal regimes. In each case, it is easily argued that the observed variations correspond to adaptations to climatic conditions, and that male sterility is a significant component of fitness and a target of natural selection.  相似文献   
73.
对约翰逊草、人工诱变四倍体高粱品系四沈甜及二者杂交种中期Ⅰ染色体构型、后期Ⅰ染色体行为进行了观察,并对花粉育性与结实率关系进行了研究。结果表明:约翰逊草、四沈甜及杂交种的染色体构型分别是:0.49Ⅰ+15.83Ⅱ+0.15Ⅲ+1.60Ⅳ、0.72Ⅰ+15.23Ⅱ+0.075Ⅲ十2.15Ⅳ、0.68Ⅰ+17.00Ⅱ+0.18Ⅲ+0.95Ⅳ。双亲及杂交种都是不规则的四倍体遗传群体。约翰逊草与同源四倍体高粱的染色体组间存在一定程度的同源性,杂交容易成功。  相似文献   
74.
Linking similar proteins structurally is a challenging task that may help in finding the novel members of a protein family. In this respect, identification of conserved sequence can facilitate understanding and classifying the exact role of proteins. However, the exact role of these conserved elements cannot be elucidated without structural and physiochemical information. In this work, we present a novel desktop application MotViz designed for searching and analyzing the conserved sequence segments within protein structure. With MotViz, the user can extract a complete list of sequence motifs from loaded 3D structures, annotate the motifs structurally and analyze their physiochemical properties. The conservation value calculated for an individual motif can be visualized graphically. To check the efficiency, predicted motifs from the data sets of 9 protein families were analyzed and MotViz algorithm was more efficient in comparison to other online motif prediction tools. Furthermore, a database was also integrated for storing, retrieving and performing the detailed functional annotation studies. In summary, MotViz effectively predicts motifs with high sensitivity and simultaneously visualizes them into 3D strucures. Moreover, MotViz is user-friendly with optimized graphical parameters and better processing speed due to the inclusion of a database at the back end. MotViz is available at http://www.fi-pk.com/motviz.html.  相似文献   
75.
采用性腺败育(GD不育)作为标准检定方法。对我国20个地方的黑腹果蝇的P因子活性和细胞型进行了测定。结果表明我国北部沿海城市为Q型;南部沿海和内地皆为M型。各地的M品系所产生的GD不育能力各不相同,但表现出与地理位置相关的梯度变化。这一变化规律为研究我国黑腹果蝇的P因子起源及P和M品系的形成提供了重要的理论依据。  相似文献   
76.
Recent studies have shown that the protein interface sites between individual monomeric units in biological assemblies are enriched in disease‐associated non‐synonymous single nucleotide variants (nsSNVs). To elucidate the mechanistic underpinning of this observation, we investigated the conformational dynamic properties of protein interface sites through a site‐specific structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi measures the dynamic resilience of a single residue to perturbations that occurred in the rest of the protein structure and identifies sites contributing the most to functionally critical dynamics. Analysis of dfi profiles of over a thousand positions harboring variation revealed that amino acid residues at interfaces have lower average dfi (31%) than those present at non‐interfaces (50%), which means that protein interfaces have less dynamic flexibility. Interestingly, interface sites with disease‐associated nsSNVs have significantly lower average dfi (23%) as compared to those of neutral nsSNVs (42%), which directly relates structural dynamics to functional importance. We found that less conserved interface positions show much lower dfi for disease nsSNVs as compared to neutral nsSNVs. In this case, dfi is better as compared to the accessible surface area metric, which is based on the static protein structure. Overall, our proteome‐wide conformational dynamic analysis indicates that certain interface sites play a critical role in functionally related dynamics (i.e., those with low dfi values), therefore mutations at those sites are more likely to be associated with disease. Proteins 2015; 83:428–435. © 2014 Wiley Periodicals, Inc.  相似文献   
77.
Social insect colonies can be seen as a distinct form of biological organisation because they function as superorganisms. Understanding how natural selection acts on the emergence and maintenance of these colonies remains a major question in evolutionary biology and ecology. Here, we explore this by using multi‐type branching processes to calculate the basic reproductive ratios and the extinction probabilities for solitary vs. eusocial reproductive strategies. We find that eusociality, albeit being hugely successful once established, is generally less stable than solitary reproduction unless large demographic advantages of eusociality arise for small colony sizes. We also demonstrate how such demographic constraints can be overcome by the presence of ecological niches that strongly favour eusociality. Our results characterise the risk‐return trade‐offs between solitary and eusocial reproduction, and help to explain why eusociality is taxonomically rare: eusociality is a high‐risk, high‐reward strategy, whereas solitary reproduction is more conservative.  相似文献   
78.
The aim of this paper is to propose an interdisciplinary evolutionary connectionism approach for the study of the evolution of modularity. It is argued that neural networks as a model of the nervous system and genetic algorithms as simulative models of biological evolution would allow us to formulate a clear and operative definition of module and to simulate the different evolutionary scenarios proposed for the origin of modularity. I will present a recent model in which the evolution of primate cortical visual streams is possible starting from non-modular neural networks. Simulation results not only confirm the existence of the phenomenon of neural interference in non-modular network architectures but also, for the first time, reveal the existence of another kind of interference at the genetic level, i.e. genetic interference, a new population genetic mechanism that is independent from the network architecture. Our simulations clearly show that genetic interference reduces the evolvability of visual neural networks and sexual reproduction can at least partially solve the problem of genetic interference. Finally, it is shown that entrusting the task of finding the neural network architecture to evolution and that of finding the network connection weights to learning is a way to completely avoid the problem of genetic interference. On the basis of this evidence, it is possible to formulate a new hypothesis on the origin of structural modularity, and thus to overcome the traditional dichotomy between innatist and empiricist theories of mind.  相似文献   
79.
Evolutionary constraint results from the interaction between the distribution of available genetic variation and the position of selective optima. The availability of genetic variance in multitrait systems, as described by the additive genetic variance-covariance matrix (G), has been the subject of recent attempts to assess the prevalence of genetic constraints. However, evolutionary constraints have not yet been considered from the perspective of the phenotypes available to multivariate selection, and whether genetic variance is present in all phenotypes potentially under selection. Determining the rank of the phenotypic variance-covariance matrix (P) to characterize the phenotypes available to selection, and contrasting it with the rank of G, may provide a general approach to determining the prevalence of genetic constraints. In a study of a laboratory population of Drosophila bunnanda from northern Australia we applied factor-analytic modeling to repeated measures of individual wing phenotypes to determine the dimensionality of the phenotypic space described by P. The phenotypic space spanned by the 10 wing traits had 10 statistically supported dimensions. In contrast, factor-analytic modeling of G estimated for the same 10 traits from a paternal half-sibling breeding design suggested G had fewer dimensions than traits. Statistical support was found for only five and two genetic dimensions, describing a total of 99% and 72% of genetic variance in wing morphology in females and males, respectively. The observed mismatch in dimensionality between P and G suggests that although selection might act to shift the intragenerational population mean toward any trait combination, evolution may be restricted to fewer dimensions.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号