首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6137篇
  免费   698篇
  国内免费   149篇
  2024年   7篇
  2023年   154篇
  2022年   95篇
  2021年   186篇
  2020年   247篇
  2019年   299篇
  2018年   271篇
  2017年   269篇
  2016年   267篇
  2015年   265篇
  2014年   330篇
  2013年   442篇
  2012年   258篇
  2011年   291篇
  2010年   239篇
  2009年   305篇
  2008年   341篇
  2007年   358篇
  2006年   255篇
  2005年   241篇
  2004年   220篇
  2003年   165篇
  2002年   188篇
  2001年   157篇
  2000年   124篇
  1999年   122篇
  1998年   94篇
  1997年   69篇
  1996年   72篇
  1995年   60篇
  1994年   58篇
  1993年   47篇
  1992年   46篇
  1991年   65篇
  1990年   32篇
  1989年   34篇
  1988年   32篇
  1987年   36篇
  1986年   26篇
  1985年   29篇
  1984年   28篇
  1983年   13篇
  1982年   47篇
  1981年   22篇
  1980年   16篇
  1979年   12篇
  1978年   8篇
  1974年   6篇
  1973年   11篇
  1972年   12篇
排序方式: 共有6984条查询结果,搜索用时 15 毫秒
151.
152.
153.
154.
155.
During pregnancy, the placenta regulates the transfer of oxygen, nutrients, and residual products between the maternal and fetal bloodstreams and is a key determinant of fetal exposure to xenobiotics from the mother. To study the disposition of substances through the placenta, various experimental models are used, especially the perfused placenta, placental villi explants, and cell lineage models. In this context, nanotechnology, an area of study that is on the rise, enables the creation of particles on nanometric scales capable of releasing drugs aimed at specific tissues. An important reason for furthering the studies on transplacental transfer is to explore the potential of nanoparticles (NPs), in new delivery strategies for drugs that are specifically aimed at the mother, the placenta, or the fetus and that involve less toxicity. Due to the fact that the placental barrier is essential for the interaction between the maternal and fetal organisms as well as the possibility of NPs being used in the treatment of various pathologies, the aim of this review is to present the main experimental models used in studying the maternal–fetal interaction and the action of NPs in the placental environment.  相似文献   
156.
Elevated atmospheric carbon dioxide (eCO2) is predicted to increase growth rates of forest trees. The extent to which increased growth translates to changes in biomass is dependent on the turnover time of the carbon, and thus tree mortality rates. Size‐ or age‐dependent mortality combined with increased growth rates could result in either decreased carbon turnover from a speeding up of tree life cycles, or increased biomass from trees reaching larger sizes, respectively. However, most vegetation models currently lack any representation of size‐ or age‐dependent mortality and the effect of eCO2 on changes in biomass and carbon turnover times is thus a major source of uncertainty in predictions of future vegetation dynamics. Using a reduced‐complexity form of the vegetation demographic model the Functionally Assembled Terrestrial Ecosystem Simulator to simulate an idealised tropical forest, we find increases in biomass despite reductions in carbon turnover time in both size‐ and age‐dependent mortality scenarios in response to a hypothetical eCO2‐driven 25% increase in woody net primary productivity (wNPP). Carbon turnover times decreased by 9.6% in size‐dependent mortality scenarios due to a speeding up of tree life cycles, but also by 2.0% when mortality was age‐dependent, as larger crowns led to increased light competition. Increases in aboveground biomass (AGB) were much larger when mortality was age‐dependent (24.3%) compared with size‐dependent (13.4%) as trees reached larger sizes before death. In simulations with a constant background mortality rate, carbon turnover time decreased by 2.1% and AGB increased by 24.0%, however, absolute values of AGB and carbon turnover were higher than in either size‐ or age‐dependent mortality scenario. The extent to which AGB increases and carbon turnover decreases will thus depend on the mechanisms of large tree mortality: if increased size itself results in elevated mortality rates, then this could reduce by about half the increase in AGB relative to the increase in wNPP.  相似文献   
157.
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.  相似文献   
158.
159.
Global environmental change is having profound effects on the ecology of infectious disease systems, which are widely anticipated to become more pronounced under future climate and land use change. Arthropod vectors of disease are particularly sensitive to changes in abiotic conditions such as temperature and moisture availability. Recent research has focused on shifting environmental suitability for, and geographic distribution of, vector species under projected climate change scenarios. However, shifts in seasonal activity patterns, or phenology, may also have dramatic consequences for human exposure risk, local vector abundance and pathogen transmission dynamics. Moreover, changes in land use are likely to alter human–vector contact rates in ways that models of changing climate suitability are unlikely to capture. Here we used climate and land use projections for California coupled with seasonal species distribution models to explore the response of the western blacklegged tick (Ixodes pacificus), the primary Lyme disease vector in western North America, to projected climate and land use change. Specifically, we investigated how environmental suitability for tick host‐seeking changes seasonally, how the magnitude and direction of changing seasonal suitability differs regionally across California, and how land use change shifts human tick‐encounter risk across the state. We found vector responses to changing climate and land use vary regionally within California under different future scenarios. Under a hotter, drier scenario and more extreme land use change, the duration and extent of seasonal host‐seeking activity increases in northern California, but declines in the south. In contrast, under a hotter, wetter scenario seasonal host‐seeking declines in northern California, but increases in the south. Notably, regardless of future scenario, projected increases in developed land adjacent to current human population centers substantially increase potential human–vector encounter risk across the state. These results highlight regional variability and potential nonlinearity in the response of disease vectors to environmental change.  相似文献   
160.
Ecological memory describes how antecedent conditions drive the dynamics of an ecological system. Palaeoecological records are paramount to understand ecological memory at millennial time-scales, but the concept is widely neglected in the literature, and a formal approach is lacking. Here, we fill such a gap by introducing a quantitative framework for ecological memory in palaeoecology, and assessing how data constraints and taxa traits shape ecological memory patterns. We simulate the population dynamics and pollen abundance of 16 virtual taxa with different life and niche traits as a response to an environmental driver. The data is processed to mimic a realistic sediment deposition and sampled at increasing depth intervals. We quantify ecological memory with Random Forests, and assess how data properties and taxa traits shape ecological memory. We find that life-span and niche features modulate the relative importance of the antecedent values of the driver and the pollen abundance over periods of 240 yr and longer. Additionally, we find that accumulation rate and decreasing pollen-sampling resolution inflate the importance of antecedent pollen abundance. Our results suggest that: 1) ecological memory patterns are sensitive to varying accumulation rates. A better understanding on the numerical basis of this effect may enable the assimilation of ecological memory concepts and methods in palaeoecology; 2) incorporating niche theory and models is essential to better understand the nature of ecological memory patterns at millennial time-scales. 3) Long-lived generalist taxa are highly decoupled from the environmental signal. This finding has implications on how we interpret the abundance-environment relationship of real taxa with similar traits, and how we use such knowledge to forecast their distribution or reconstruct past climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号