首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3193篇
  免费   184篇
  国内免费   436篇
  2024年   8篇
  2023年   33篇
  2022年   41篇
  2021年   57篇
  2020年   57篇
  2019年   63篇
  2018年   41篇
  2017年   68篇
  2016年   56篇
  2015年   70篇
  2014年   70篇
  2013年   100篇
  2012年   80篇
  2011年   94篇
  2010年   95篇
  2009年   123篇
  2008年   131篇
  2007年   165篇
  2006年   180篇
  2005年   171篇
  2004年   143篇
  2003年   151篇
  2002年   123篇
  2001年   120篇
  2000年   112篇
  1999年   119篇
  1998年   97篇
  1997年   118篇
  1996年   105篇
  1995年   99篇
  1994年   102篇
  1993年   91篇
  1992年   94篇
  1991年   72篇
  1990年   79篇
  1989年   73篇
  1988年   55篇
  1987年   67篇
  1986年   58篇
  1985年   77篇
  1984年   45篇
  1983年   28篇
  1982年   24篇
  1981年   13篇
  1980年   15篇
  1979年   4篇
  1978年   6篇
  1977年   4篇
  1976年   6篇
  1972年   5篇
排序方式: 共有3813条查询结果,搜索用时 78 毫秒
121.
Comparative measurements were made of the fluidity of chloroplast thylakoids, total membrane lipids and polar lipids utilizing the order parameter and motion of spin labels.No significant differences were found in the fluidity of membranes or total membrane lipids from a wild type and a mutant barley (Hordeum vulgare chlorina f2 mutant) which lacks chlorophyll b and a 25 000 dalton thylakoid polypeptide. Redistribution of intrinsic, exoplasmic face (EF) membrane particles by unstacking thylakoid membranes in low salt medium also had no effect on membrane fluidity. However, heating of isolated thylakoids decreased membrane fluidity.The fluidity of vesicles composed of membrane lipids is much greater than that of the corresponding membranes. Fluidity of the membranes, however, increased during greening indicating that the rigidity of the membranes, compared with that of total membrane lipids, is not caused by chlorophyll or its associated peptides. It is concluded that the restriction of motion in the acyl chains in the thylakoids is not caused by chlorophyll or the major intrinsic polypeptide but by some other protein components.  相似文献   
122.
Seeds of the H. murinum aggregate were collected from much of the range of the group and soluble protein extracts were subject to gel-electrophoresis analysis. Diploid, tetraploid and hexaploid plants were readily differentiated. Analysis using a similarity matrix and dendrogram revealed further groups within the ploidy levels and indicated inter-group relationships. Evidence obtained supported karyological results, suggesting that tetraploid and hexaploid plants are allopolyploids, and that one of their putative parents is a diploid known from Turkey and adventive in Australia. Within the tetraploids there is little correspondence between groups detected by either gel-electrophoresis or karyology, and the species H. leporinum (mostly southern) and H. murinum (mostly northern).  相似文献   
123.
采用经典测量和染色体常规压片法,对龙牙百合(Lilium brownii var.viridulum Baker)3个地方品种的形态特征及核型进行研究。植株形态分析结果显示:‘江西’龙牙的株高、开花口径、种球重量和周长、中外层鳞片重量和长度以及鳞片扦插产生小鳞茎数等指标均显著大于‘大叶’龙牙和‘平头’龙牙;‘大叶’龙牙的叶片最长,均值为14.54 cm。花粉、叶表皮气孔及鳞片淀粉粒的微形态特征分析结果显示:‘江西’龙牙的花粉粒径最大,均值达111.76 μm;‘平头’龙牙的叶表皮气孔最长,气孔密度也最大(约47.6个/mm2);‘大叶’龙牙的淀粉粒径最大,均值为47.61 μm;‘江西’龙牙的淀粉粒大小分布更集中,差异性小。染色体核型分析结果显示:龙牙百合3个品种的染色体数目均为2n=2x=24,为二倍体,其中‘江西’龙牙核型公式为2n=2x=24=2m(2SAT)+6sm(2SAT)+12st(4SAT)+4t;‘平头’龙牙核型公式为2n=2x=24=4m+8sm+10st(4SAT)+2t;‘大叶’龙牙核型公式为2n=2x=24=2m(2SAT)+6sm+14st(4SAT)+2t,三者核型均为3B型。  相似文献   
124.
林檎与花红在新梢、花、果方面均有较大的差别,其树干及大枝上有寄生瘤状突起。中国绵苹果的酶谱差异较大,林檎与花红的酶谱最接近,主酶带均为三条,其中有两条Rf值分别为0.53、0.56的主酶带相同;林檎比花红多出一条Rf值为0.80的弱酶带。结果表明,林檎为花红的一个变种。  相似文献   
125.
The effect of nitrate availability on characteristics of the nitrate assimilatory system was investigated in N-limited barley (Hordeum valgare L. cv. Golf), grown with the seminal root system split into initially equal-sized halves. The cultures were continuously supplied with nitrate-N at a relative addition rate (RA) of 0.09 day?1, which resulted in relative growth rates (RG) that were ca 85% of those observed under surplus nitrate nutrition. The total N addition was divided between the subroots in ratios of 100:0, 80:20, 70:30, 60:40, and 50:50. For comparison, standard cultures were grown at RAs ranging from 0.03 to 0.18 day?1. Initially, biomass and N partitioning to the subroots responded strongly and proportionally to the nitrate distribution ratio. After 12-14 days no further effect was observed. The Vmax for net nitrate uptake and in vitro nitrate reductase (NR) activity were measured in acclimated plants, i.e., after > 14 days under a certain nitrate regime. In subroots fed from 20 to 100% of the total N addition, Vmax for net nitrate uptake increased slightly, whereas NR activity was unaffected. Uptake and NR activities were insignificant in the 0%-subroot. Uneven nitrate supply to individual subroots had negligible effect on the whole-plant ability for nitrate uptake, and the relative Vmax (unit N taken up per unit N in whole plant tissue and time) remained about 7-fold in excess of the demand set by growth. Balancing nitrate concentrations (the resulting external nitrate concentrations at a certain RA) generally ranged between 2 and 10 μM at growth-limiting RA, both when predicted from uptake kinetics and when actually measured. When comparing split root and standard cultures when acclimated, it appears that uptake and NR activities in roots respond more strongly to over-all nitrate availability than to nitrate availability to individual subroots.  相似文献   
126.
Take-all of wheat, caused by Gaeumannomyces graminis var tritici (Ggt), is reduced by ammoniacal fertilizers as compared to nitrate sources. This influence of nitrogen on the disease is only observed on nodal roots at flowering. But soil conduciveness to take-all, as measured in a soil bioassay, is modified earlier. Forty days after nitrogen application at early tillering, the NH4-treated soil became less conducive than the NO3-treated one. When nitrogen applications are done at sowing and at tillering, differences in disease propagation between the two soils are enhanced. Results from four years of experimentation show that when the level of natural soil inoculum is high, disease severity is reduced by ammonium, showing an effect on the parasitic phase of Ggt. At a low level of natural inoculum the effect of the source of nitrogen is mainly observed on the percent of infected plants, indicating that the saprophytic and preparasitic phases are affected. Rhizospheric bacterial populations increase from sowing to tillering, but differences on take-all conduciveness after tillering are not correlated with differences in the amounts of aerobic bacteria or fluorescent pseudomonads isolated from soils treated with different sources of nitrogen. Qualitative changes in fluorescent Pseudomonas spp. populations, like in vitro antagonism, are more likely to explain differences in soil conduciveness to take-all than are quantitative changes in this group. Nevertheless, the introduction of Ggt in a cropped soil leads to a greater increase in fluorescent pseudomonads populations than in total aerobic bacteria.The delay between reducing soil conduciveness and reducing disease in the field with ammonium nitrogen fertilization, the qualitative change of fluorescent pseudomonads populations and the role of necroses in rhizobacteria multiplication, provide information leading to our representation of a dynamic model based on the differentiation of the wheat root system into seminal and nodal roots.  相似文献   
127.
The effects of root-zone salinity (0, 30, and 60 mmol L–1 of NaCl) and root-zone temperature (10, 15, 20, and 25°C) and their interactions on the number of tillers, total dry matter production, and the concentration of nutrients in the roots and tops of barley (Hordeum vulgare L.) were studied. Experiments were conducted in growth chambers (day/night photoperiod of 16/8 h and constant air temperature of 20°C) and under water-culture conditions. Salinity and root temperature affected all the parameters tested. Interactions between salinity and temperature were significant (p<0.05) for the number of tillers, growth of tops and roots, and the concentration of Na, K, P in the tops and the concentration of P in the roots. Maximum number of tillers and the highest dry matter were produced when the root temperature was at the intermediate levels of 15 to 20°C. Effect of salinity on most parameters tested strongly depended on the prevailing root temperature. For example, at root temperature of 10°C addition of 30 mmol L–1 NaCl to the nutrient solution stimulated the growth of barley roots; at root temperature of 25°C, however, the same NaCl concentration inhibited the root growth. At 60 mmol L–1, root and shoot growth were maximum when root temperature was kept at the intermediate level of 15°C; most inhibition of salinity occurred at both low (10°C) and high (25°C) root temperatures. As the root temperature was raised from 10 to 25°C, the concentration of Na generally decreased in the tops and increased in the roots. At a given Na concentration in the tops or in the roots, respective growth of tops or roots was much less inhibited if the roots were grown at 15–20°C. It is concluded that the tolerance of barley plant to NaCl salinity of the rooting media appears to be altered by the root temperature and is highest if the root temperature is kept at 15 to 20°C.  相似文献   
128.
Summary The relationship between in vitro performance of haploid embryos and the agronomic performance of the derived doubled haploid (DH) lines during the stages of field evaluation was investigated. The results showed a positive correlation between coleoptile height of haploid plantlets in culture and final plant height of their DH progeny lines in the field. These results illustrate that in vitro selection for plant height and other linked quantitative or pleiotropic characters can be carried out at the initial stages of a DH breeding programme.  相似文献   
129.
Summary In an attempt to transfer traits of agronomic importance from H. bulbosum into H. vulgare we carried out crosses between four diploid barley cultivars and a tetraploid H. bulbosum. Eleven viable triploid F1 plants were produced by means of embryo rescue techniques. Meiotic pairing between H. vulgare and H. bulbosum chromosomes was evidenced by the formation of trivalents at a mean frequency of 1.3 with a maximum of five per cell. The resulting triploid hybrids were backcrossed to diploid barley, and nine DC1 plants were obtained. Three of the BC1 plants exhibited H. bulbosum DNA or disease resistance. A species specific 611-bp DNA probe, pSc119.2, located in telomeres of the H. bulbosum genome, clearly detected five H. bulbosum DNA fragments of about 2.1, 2.4, 3.4, 4.0 and 4.8 kb in size present in one of the BC1 plants (BC1-5) in BamHI-digésted genomic Southern blots. Plant BC1-5 also contained a heterozygous chromosomal interchange involving chromosomes 3 and 4 as identified by N-banding. One of the two translocated chromosomes had the H. bulbosum sequence in the telomeric region as detected using in situ hybridization with pSc119.2. Two other BC1 plants (BC1-1 and BC1-2) were resistant to the powdery mildew isolates to which the barley cultivars were susceptible. Seventy-nine BC2 plants from plant BC1-2 segregated 32 mildew resistant to 47 susceptible, which fits a ratio of 11, indicating that the transferred resistance was conditioned by a single dominant gene. Reciprocal crosses showed a tendency towards gametoselection that was relative to the resistance. Mildew resistant plant BC1-2 also had a 1-kb H. bulbosum DNA fragment identified with a ten-base random primer using polymerase chain reaction (PCR). Forty-three BC1 plants, randomly sampled from the 79 BC1 plants, also segregated 2320 for the presence versus absence of this 1-kb H. bulbosum DNA fragment, thereby fitting a 11 ratio and indicating that the PCR product originated from a single locus. The 1-kb DNA fragment and disease resistance were independently inherited as detected by PCR analysis of bulked DNA from 17 resistant and 17 susceptible plants as well as by trait segregation in the 43 individual plants. The progenies produced could serve as an important resistant source in plant breeding. This is the first conclusive report of the stable transfer of disease resistance and DNA from H. bulbosum to H. vulgare.  相似文献   
130.
Summary One of the aims of the interspecific crossing programme between Hordeum vulgare L. and H. bulbosum L. has been to introgress desirable genes into barley from the wild species. However, despite their close taxonomic relationship there have been few reports of achieving this objective using amphidiploid hybrids. In order to broaden the range of available hybrids, partially fertile triploids between H. vulgare (2n = 2x = 14) and H. bulbosum (2n = 4x = 28) were developed and crossed with H. vulgare as female parent. From 580 progeny which were screened, eight putative single monosomic chromosome substitution lines and one double monosomic substitution were identified by cytological analysis. These involved the substitution of H. vulgare chromosome 1 (two lines), 6 (four lines), 6L (one line), 7 (one line) and 1 + 4 (one line) by their respective H. bulbosum homoeologues. The H. bulbosum chromosome was frequently eliminated during plant development, but it was observed regularly in pollen mother cells of two lines. However, pairing between the H. bulbosum chromosome and its H. vulgare homoeologue was low. Several of the lines were more resistant than their H. vulgare parents to powdery mildew (Erysiphe graminis DC. f.sp. hordei Em. Marchai), net blotch (Drechslera teres Sacc.) and scald (Rhynchosporium secalis (Oudem.) Davis). Apart from their use in studying genome relationships, their value to plant breeders will depend on the ease of inducing translocations between the parental chromosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号