首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1255篇
  免费   36篇
  国内免费   17篇
  2023年   6篇
  2022年   3篇
  2021年   7篇
  2020年   9篇
  2019年   7篇
  2018年   5篇
  2017年   11篇
  2016年   12篇
  2015年   14篇
  2014年   18篇
  2013年   26篇
  2012年   11篇
  2011年   11篇
  2010年   17篇
  2009年   33篇
  2008年   44篇
  2007年   42篇
  2006年   38篇
  2005年   56篇
  2004年   54篇
  2003年   45篇
  2002年   43篇
  2001年   44篇
  2000年   40篇
  1999年   53篇
  1998年   46篇
  1997年   64篇
  1996年   55篇
  1995年   54篇
  1994年   44篇
  1993年   48篇
  1992年   40篇
  1991年   40篇
  1990年   35篇
  1989年   31篇
  1988年   26篇
  1987年   33篇
  1986年   20篇
  1985年   44篇
  1984年   26篇
  1983年   17篇
  1982年   10篇
  1981年   9篇
  1980年   9篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1972年   4篇
排序方式: 共有1308条查询结果,搜索用时 15 毫秒
41.
The interfering effects of copper, zinc, and cobalt on the uptake of mugineic acid-ferric complex were studied in barley ( Hordeum vulgare , cv. Minorimugi) grown in nutrient solution. Short-term uptake experiments of 3 h were performed utilizing both ionic and mugineic acid-complex forms of each metal at two different concentrations. Copper was most effective in decreasing iron uptake when added in an ionic form at either concentration. The inhibition order at higher concentrations followed Cu(II) > Zn(II) ≥ Co(II), Co(III), which is consistent with the stability constants of these metal complexes with mugineic acid. The displacement of iron from its mugineic acid complex by these metals is suggested as a probable explanation for the decreased iron uptake. The inhibitory effect of metal complexes with mugineic acid on iron uptake was only found in cases with higher concentrations of Cu(II) and Zn(II) complexes. Deformation of the specific iron transport system in the plasma membrane due to their adsorption may be responsible for this effect.  相似文献   
42.
Immature zygotic embryos from spring barley cv. Dissa were used to induce somatic embryogenenesis. Up to 158 germinated somatic embryos could be recovered per plated zygotic embryo. Critical factors for obtaining a high yield of regenerants were the size of the explant, the level of 2,4-D used for callus induction and the careful division of callus at each subculture. Use of microsections of immature embryos as explants revealed a pronounced gradient of callus formation and embryogenic response across the scutellum. Sections from the scutellar tissue at the coleoptilar end of the embryo gave the most callus and were highly embryogenic. The regeneration response of sectioned explants was comparable to that recovered from intact embryos of similar size.  相似文献   
43.
The exchange of ammonia between the atmosphere and the canopy of spring barley crops growing at three levels of nitrogen application (medium N, high N and excessive N) was studied over two consecutive growing seasons by use of micrometeorological techniques. In most cases, ammonia was emitted from the canopy to the atmosphere. The emission started around 2 weeks before anthesis, and peaked about or shortly after anthesis. The volatilization of ammonia only took place in the daytime. During the night-time, atmospheric ammonia was frequently aborbed by the canopy. Occasionally, plants in the medium and high N treatments also absorbed ammonia from the atmosphere during the daytime. Daytime absorption of ammonia never occurred in the excessive N canopy. The loss of ammonia from the canopy amounted in both years to 0.5–1.5 kg NH3-N ha?1 and increased with the N status of the canopy. In agreement with the small losses of ammonia, the content of 15N-labelled nitrogen in the plants did not decline during the grain-filling period. The experimental years were characterized by very favourable conditions for grain dry matter formation, and for re-utilization of nitrogen mobilized from leaves and stems. Consequently, a very high part of the nitrogen in the mature plants was located in grain dry matter (80–84% in 1989; 74–80% in 1990). The efficient re-utilization of nitrogen may have reduced the volatilization of ammonia.  相似文献   
44.
45.
同源异型域-亮氨酸拉链(homedomain-leucine zipper,HD-Zip)转录因子广泛参与植物的生长发育和抗胁迫过程。该研究通过生物信息学方法对青稞HD-Zip基因家族进行全基因组分析鉴定,并采用qRT-PCR技术分析非生物胁迫下该基因的表达特性,为深入探讨青稞HD-Zip转录因子的生物学功能及其在高原作物抗逆育种中的应用奠定基础。结果表明:(1)成功从青稞基因组中共鉴定出41个HD-Zip基因家族成员,依次命名为i>HvvHD-ZipⅠ-1~Ⅳ-13,且这些基因在7条染色体上呈不均匀分布。(2)理化性质分析发现,HvvHD-Zip蛋白包含197~885个不等的氨基酸残基;分子量范围在19 914.36~94 014.87 Da;亚细胞定位表明HvvHD-Zip蛋白都位于细胞核。(3)根据多序列比对、系统进化、基因结构和保守基序差异将其聚为4个亚家族,各亚家族分类特征与系统聚类结果一致。(4)顺式作用元件预测分析发现,i>HvvHD-Zip基因启动子中含有11种植物激素和胁迫响应元件。(5)qRT-PCR结果显示,HvvHD-Zip Ⅰ、Ⅱ、Ⅳ亚家族基因对各胁迫响应明显;与根组织相比,多数i>HvvHD-Zip基因在叶组织中响应明显(上调或下调);与冷和盐胁迫相比,i>HvvHD-Zip各基因对旱胁迫响应较强。  相似文献   
46.
47.
48.
49.
Barley (Hordeum vulgare L.) was grown with UV-B (280–320 nm) at levels simulating 25 nr 5% ozone depletion on the date of the summer solstice al 40°N latitude, with UV-A (320–400 nm), or with no supplemental irradiation. In plant growth chambers providing 300 μmol m?2 s?1 photosynthetically active radiation (PAR). UV-B-grown leaves elongated more slowly than controls but reached the same final length 1 day later. Leal specific fresh weight (mass leaf area?1) was significantly increased by UV-B after the 7th day of growth. IV-B did not significantly affect leaf area, fresh weight, dry weight, total chlorophylls, total carotenoids or photosynthetic quantum efficiency. CO2 assimilation was decreased by UV-B only at internal CO2 levels above 250 μl l?1. By the 8th day of growth, UV-B increased flavonoid (saponarin and lutonarin) accumulation in both the lower epidermis and the mesophyll: about 40% of the saponarin and 20% of the lutonarin were in the lower epidermis under all experimental conditions. Glasshouse conditions proved too variable for reproducible determination of growth and photosynthesis but were reliable for determining developmental changes in flavonoid (saponarin and lutonarin) accumulation and provided up to 800 μmol m?2 s?1 PAR. In the glasshouse UV-B-grown leaves had more flavonoids than controls al all stages from 5 to 30 days after planting: ca 509 more saponarin and 100% more lutonarin. Levels of soluble (vacuolar) ferulic acid esters were similar under all conditions on day 5. and on day 20 or later, but were significantly higher in UV-B-grown plants on days 10 and 15. UV-B decreased insoluble (cell-wall-bound) ferulic acid esters on a whole leaf basis but significantly increased this fraction in the lower epidermis. UV-A had no significant effects on growth, photosynthesis or ferulic acid, but it slightly increased flavonoid accumulation. The results are discussed in terms of secondary phenolics as a tissue-specific, developmentally regulated adaptive response to UV-B.  相似文献   
50.
Spring barley ( Hordeum vulgare L. cv. Golf) was grown at different nitrate supply rates, controlled by using the relative addition rate technique, in order to elucidate the relationship between nitrate-N supply and root and shoot levels of abscisic acid (ABA). The plants were maintained as (1) standard cultures where nitrate was supplied at relative addition rates (RAs) of 0.03, 0.09 and 0.18 day−1, and (2) split-root cultures at RA 0.09 day−1 but with the nitrate distributed between the two root parts in ratios of 100:0, 80:20 and 60:40. Time-dependent changes in root and shoot concentrations of ABA (determined by radioimmunoassay using a monoclonal antibody) were observed in both standard and split-root cultures during 12 days of acclimation to the different nitrate regimes. However, the ABA responses were similar at all nitrate supply rates. Further experiments were performed with split-root cultures where the distribution of nitrate between the two root parts was reversed from 80:20 to 20:80 so that short-term effects to local perturbations of nitrate supply could be studied without altering whole-plant N absorption. Transient increases in ABA concentrations (maximum of 25 to 40% after 3 to 4 h) were observed in both subroot parts, as well as in xylem sap and shoot tissue. By pruning the root system it was demonstrated that the change in ABA had its origin in the subroot part receiving the increased nitrate supply (i.e. switched from 20 to 80% of the total nitrate supply). The data indicate that ABA responses are easily transmitted between different organs, including transmission from one set of seminal roots to another via the shoot. The data do not provide any indication that long-term nitrate supplies or general nitrogen status of barley plants affect, or are otherwise related to, the average tissue ABA concentrations of roots and shoots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号