首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2120篇
  免费   104篇
  国内免费   22篇
  2246篇
  2024年   2篇
  2023年   21篇
  2022年   29篇
  2021年   42篇
  2020年   30篇
  2019年   56篇
  2018年   66篇
  2017年   45篇
  2016年   35篇
  2015年   92篇
  2014年   207篇
  2013年   179篇
  2012年   145篇
  2011年   213篇
  2010年   134篇
  2009年   85篇
  2008年   126篇
  2007年   108篇
  2006年   103篇
  2005年   98篇
  2004年   72篇
  2003年   61篇
  2002年   56篇
  2001年   17篇
  2000年   19篇
  1999年   15篇
  1998年   22篇
  1997年   14篇
  1996年   15篇
  1995年   11篇
  1994年   10篇
  1993年   10篇
  1992年   9篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   8篇
  1986年   8篇
  1985年   6篇
  1984年   13篇
  1983年   26篇
  1982年   14篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有2246条查询结果,搜索用时 0 毫秒
101.
102.
103.
104.
Allergic inflammation has been known to enhance the metastatic potential of tumor cells. The role of histone deacetylase-3 (HDAC3) in allergic skin inflammation was reported. We investigated HDAC3 involvement in the allergic inflammation-promotion of metastatic potential of tumor cells. Passive systemic anaphylaxis (PSA) induced HDAC3 expression and FcϵRI signaling in BALB/c mice. PSA enhanced the tumorigenic and metastatic potential of mouse melanoma cells in HDAC3- and monocyte chemoattractant protein 1-(MCP1)-dependent manner. The PSA-mediated enhancement of metastatic potential involved the induction of HDAC3, MCP1, and CD11b (a macrophage marker) expression in the lung tumor tissues. We examined an interaction between anaphylaxis and tumor growth and metastasis at the molecular level. Conditioned medium from antigen-stimulated bone marrow-derived mouse mast cell cultures induced the expression of HDAC3, MCP1, and CCR2, a receptor for MCP1, in B16F1 mouse melanoma cells and enhanced migration and invasion potential of B16F1 cells. The conditioned medium from B16F10 cultures induced the activation of FcϵRI signaling in lung mast cells in an HDAC3-dependent manner. FcϵRI signaling was observed in lung tumors derived from B16F10 cells. Target scan analysis predicted HDAC3 to be as a target of miR-384, and miR-384 and HDAC3 were found to form a feedback regulatory loop. miR-384, which is decreased by PSA, negatively regulated HDAC3 expression, allergic inflammation, and the positive feedback regulatory loop between anaphylaxis and tumor metastasis. We show the miR-384/HDAC3 feedback loop to be a novel regulator of the positive feedback relationship between anaphylaxis and tumor metastasis.  相似文献   
105.
106.
产肠毒素大肠杆菌(ETEC)定植于仔猪肠道的第一步是通过987P菌毛与小肠上皮细胞表面刷状缘大分子(BBV)结合。对分离的BBV进行SDS-PAGE和Ligand blot分析表明, 在32~35KDa区域内有一条带能被987P菌毛探针所识别和结合, 所结合的条带经胰蛋白酶消化后, 通过微内径反相高效液相色谱(RP-HPLC)分离出多条主要峰带蛋白峰带, 采用衬质辅助激光解吸与电离质谱法(MALDI-MS)对主要峰带进行分析, 结合多肽氨基酸测序和Blast同源性比较, 得到3个氨基酸基序(AETAP、ALAAAGYDVEK和LGLK), 其序列与人和鼠源的组蛋白H1高度同源; 来源于仔猪小肠上皮细胞BBV的H1蛋白与BBV一样都能特异性结合纯化的987P菌毛蛋白。上述结果表明, 仔猪小肠上皮细胞BBV的组蛋白H1是987P菌毛蛋白的受体。  相似文献   
107.
Histone lysine methyltransferases and demethylases in Plasmodium falciparum   总被引:2,自引:0,他引:2  
Dynamic histone lysine methylation, regulated by methyltransferases and demethylases, plays fundamental roles in chromatin structure and gene expression in a wide range of eukaryotic organisms. A large number of SET-domain-containing proteins make up the histone lysine methyltransferase (HKMT) family, which catalyses the methylation of different lysine residues with relatively high substrate specificities. Another large family of Jumonji C (JmjC)-domain-containing histone lysine demethylases (JHDMs) reverses histone lysine methylation with both lysine site and methyl-state specificities. Through bioinformatic analysis, at least nine SET-domain-containing genes were found in the malaria parasite Plasmodium falciparum and its sibling species. Phylogenetic analysis separated these putative HKMTs into five subfamilies with different putative substrate specificities. Consistent with the phylogenetic subdivision, methyl marks were found on K4, K9 and K36 of histone H3 and K20 of histone H4 by site-specific methyl-lysine antibodies. In addition, most SET-domain genes and histone methyl-lysine marks displayed dynamic changes during the parasite asexual erythrocytic cycle, suggesting that they constitute an important epigenetic mechanism of gene regulation in malaria parasites. Furthermore, the malaria parasite and other apicomplexan genomes also encode JmjC-domain-containing proteins that may serve as histone lysine demethylases. Whereas prokaryotic expression of putative active domains of four P. falciparum SET proteins did not yield detectable HKMT activity towards recombinant P. falciparum histones, two protein domains expressed in vitro in a eukaryotic system showed HKMT activities towards H3 and H4, respectively. With the discovery of these Plasmodium SET- and JmjC-domain genes in the malaria parasite genomes, future efforts will be directed towards elucidation of their substrate specificities and functions in various cellular processes of the parasites.  相似文献   
108.
109.

Background

Histone post-translational modifications (PTMs) play an important role in the regulation of the expression of genes, including those involved in cancer development and progression. However, our knowledge of PTM patterns in human tumours is limited.

Methods

MS-based analyses were used to quantify global alterations of histone PTMs in colorectal cancer (CRC) samples. Histones isolated from 12 CRCs and their corresponding normal mucosa by acidic extraction were separated by SDS-PAGE and analysed by liquid chromatography-mass spectrometry.

Results

Among 96 modified peptides, 41 distinct PTM sites were identified, of which 7, 13, 11, and 10 were located within the H2A, H2B, H3, and H4 sequences, respectively, and distributed among the amino-terminal tails and the globular domain of the four histones. Modification intensities were quantified for 33 sites, of which 4 showed significant (p-value ≤ 0.05) differences between CRC tissues and healthy mucosa samples. We identified histone H3 lysine 27 acetylation (H3K27Ac) as a modification upregulated in CRC, which had not been shown previously.

Conclusions

The present results indicate the usefulness of a bottom-up proteomic approach for the detection of histone modifications at a global scale. The differential abundance of H3K27Ac mark in CRC, a PTM associated with active enhancers, suggests its role in regulating genes whose expression changes in CRC.  相似文献   
110.
Nucleosomes are basic chromatin structural units that are formed by DNA sequences wrapping around histones. Global chromatin states in different cell types are specified by combinatorial effects of post-translational modifications of histones and the expression of histone variants. During mouse spermatogenesis, spermatogonial stem cells (SSCs) self-renew while undergo differentiation, events that occur in the company of constant re-modeling of chromatin structures. Previous studies have shown that testes contain highly expressed or specific histone variants to facilitate these epigenetic modifications. However, mechanisms of regulating the epigenetic changes and the specific histone compositions of spermatogenic cells are not fully understood. Using real time quantitative RT-PCR, we examined the dynamic expression of replication-dependent histone genes in post-natal mouse testes. It was found that distinct sets of histone genes are expressed in various spermatogenic cells at different stages during spermatogenesis. While gonocyte-enriched testes from mice at 2-dpp (days post partum) express pre-dominantly thirteen histone variant genes, SSC-stage testes at 9-dpp highly express a different set of eight histone genes. During differentiation stage when testes are occupied mostly by spermatocytes and spermatids, another twenty-two histone genes are expressed much higher than the rest, including previously known testis-specific hist1h1t, hist1h2ba and hist1h4c. In addition, histone genes that are pre-dominantly expressed in gonocytes and SSCs are also highly expressed in embryonic stem cells. Several of them were changed when embryoid bodies were formed from ES cells, suggesting their roles in regulating pluripotency of the cells. Further more, differentially expressed histone genes are specifically localized in either SSCs or spermatocytes and spermatids, as demonstrated by in situ hybridization using gene specific probes. Taken together, results presented here revealed that different combinations of histone variant genes are expressed in distinct spermatogenic cell types accompanying the progression of self-renewal and differentiation of SSCs, suggesting a systematic regulatory role histone variants play during spermatogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号