首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1584篇
  免费   33篇
  国内免费   17篇
  2024年   1篇
  2023年   8篇
  2022年   20篇
  2021年   36篇
  2020年   22篇
  2019年   44篇
  2018年   49篇
  2017年   28篇
  2016年   31篇
  2015年   74篇
  2014年   175篇
  2013年   139篇
  2012年   131篇
  2011年   193篇
  2010年   105篇
  2009年   64篇
  2008年   86篇
  2007年   76篇
  2006年   60篇
  2005年   56篇
  2004年   38篇
  2003年   28篇
  2002年   20篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   10篇
  1997年   3篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   8篇
  1986年   8篇
  1985年   6篇
  1984年   13篇
  1983年   25篇
  1982年   12篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
排序方式: 共有1634条查询结果,搜索用时 15 毫秒
181.
182.
183.
Calcium ions have been implicated in apoptosis for many years, however the precise role of this ion in the cell death process remains incomplete. We have extensively examined the role of Ca(2+) on nuclear degradation in vitro using highly purified nuclei isolated from non-apoptotic rat thymocytes. We show that these nuclei are devoid of CAD (caspase-activated DNase), and DNA degradation occurs independent of caspase activity. Serine proteases rather than caspase-3 appear necessary for this Ca(2+) -dependent DNA degradation in nuclei. We analyzed nuclei treated with various concentrations of Ca(2+) in the presence of both a physiological (140 mM) and apoptotic (40 mM) concentration of KCl. Our results show that a 5-fold increase in Ca(2+) is required to induce DNA degradation at the physiological KCl concentration compared to the lower, apoptotic concentration of the cation. Ca(2+) -induced internucleosomal DNA degradation was also accompanied by the release of histones, however the apoptotic-specific phosphorylation of histone H2B does not occur in these isolated nuclei. Interestingly, physiological concentrations of K(+) inhibit both Ca(2+) -dependent DNA degradation and histone release suggesting that a reduction of intracellular K(+) is necessary for this apoptosis-associated nuclear degradation in cells. Together, these data define an inherent caspase-independent catabolic pathway in thymocyte nuclei that is sensitive to physiological concentrations of intracellular cations.  相似文献   
184.
185.
186.
Krajewski WA 《Biochimie》2008,90(3):534-541
Using cell-free system derived from Drosophila embryos, we found evidence for a regulated nucleosome disruption process, which depends on the phosphorylation status of 120 kDa protein (complex). Dephosphorylation enables the remodeling activity to destabilize nucleosomes, which assume a more accessible structure, possessing increased DNase I sensitivity and high conformational flexibility of DNA; remodeling was more efficient on highly acetylated chromatin templates. This phosphorylation-regulated nucleosome destabilization, acting synergistically with histone acetylation, is discussed as a possible mechanism to provide regulated disrupt of histone-DNA interaction.  相似文献   
187.
We recently identified a Transposase domain protein called Metnase, which assists in repairing DNA double-strand breaks (DSB) via non-homologous end-joining (NHEJ), and is important for foreign DNA integration into a host cell genome. Since integration is essential for productive lentiviral infection we examined whether Metnase expression levels could have an influence on lentiviral genomic integration. Using cells stably transduced to either over- or under-express Metnase we determined that the expression level of Metnase did indeed correlate with live lentiviral integration. Changes in Metnase levels were accompanied by changes in the number of copies of integrated lentiviral cDNA. While Metnase levels affected lentiviral integration, it had no effect on the amount of either total cellular viral RNA, cDNA or 2-LTR circles. Therefore, Metnase enhances the integration of lentivirus DNA into the host cell genome.  相似文献   
188.
An acetyl-histone peptide library was used to determine the thermodynamic parameters that define acetylation-dependent bromodomain-histone interactions. Bromodomains interact with histones by binding acetylated lysines. The bromodomain used in this study, BrD3, is derived from the polybromo-1 protein, which is a subunit of the PBAF chromatin remodeling complex. Steady-state fluorescence anisotropy was used to examine the variations in specificity and affinity that drive molecular recognition. Temperature and salt concentration dependence studies demonstrate that the hydrophobic effect is the primary driving force, consistent with lysine acetylation being required for binding. An electrostatic effect was observed in only two complexes where the acetyl-lysine was adjacent to an arginine. The large change in heat capacity determined for the specific complex suggests that the dehydrated BrD3-histone interface forms a tightly bound, high-affinity complex with the target site. These explorations into the thermodynamic driving forces that confer acetylation site-dependent BrD3-histone interactions improve our understanding of how individual bromodomains work in isolation. Furthermore, this work will permit the development of hypotheses regarding how the native Pb1, and the broader class of bromodomain proteins, directs multisubunit chromatin remodeling complexes to specific acetyl-nucleosome sites in vivo.  相似文献   
189.
Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E2 without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号