首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2132篇
  免费   39篇
  国内免费   20篇
  2191篇
  2024年   1篇
  2023年   9篇
  2022年   22篇
  2021年   40篇
  2020年   24篇
  2019年   49篇
  2018年   55篇
  2017年   30篇
  2016年   34篇
  2015年   94篇
  2014年   239篇
  2013年   197篇
  2012年   202篇
  2011年   258篇
  2010年   164篇
  2009年   86篇
  2008年   108篇
  2007年   99篇
  2006年   88篇
  2005年   76篇
  2004年   63篇
  2003年   42篇
  2002年   27篇
  2001年   4篇
  2000年   12篇
  1999年   12篇
  1998年   15篇
  1997年   6篇
  1996年   12篇
  1995年   10篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   8篇
  1986年   8篇
  1985年   6篇
  1984年   13篇
  1983年   25篇
  1982年   12篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
排序方式: 共有2191条查询结果,搜索用时 0 毫秒
41.
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.  相似文献   
42.
利用生物信息学方法,对西瓜(Citrullus lanatus(Thunb.)Matsum.&Nakai)JmjC基因家族的成员进行鉴定,对该基因家族的染色体定位、基因结构、蛋白结构域、选择压力和酶活位点进行分析,并对该基因家族与其它物种的系统进化及共线性关系进行研究。结果显示:西瓜全基因组含有17个JmjC候选基因,核苷酸序列长度为1209~5541 bp;这些基因均含有JmjC结构域,分别位于9条染色体上,归属8个亚族。系统进化、选择压力以及共线性分析结果表明,西瓜与黄瓜(Cucumis sativus L.)亲缘关系较近,JmjC家族基因数量相同,其中14个成员呈现一对一的共线性关系;而西瓜与拟南芥(Arabidopsis thaliana(L.)Heynh)亲缘关系较远,但西瓜和拟南芥同一亚族中JmjC基因间Ka/Ks的比值均小于1,推测西瓜各个亚族成员的编码蛋白功能与同一亚族的拟南芥成员功能极为相似。酶活位点分析结果表明西瓜JmjC基因家族中有10个成员具有潜在的组蛋白去甲基化酶活性。  相似文献   
43.
44.
45.
Histone deacetylases (HDACs) are important class of enzymes that deacetylate the ε-amino group of the lysine residues in the histone tails to form a closed chromatin configuration resulting in the regulation of gene expression. Inhibition of these HDACs enzymes have been identified as one of the promising approaches for cancer treatment. The type-specific inhibition of class I HDAC enzymes is known to elicit improved therapeutic effects and thus, the search for promising type-specific HDAC inhibitors compounds remains an ongoing research interest in cancer drug discovery. Several different strategies are employed to identify the features that could identify the isoform specificity factors in these HDAC enzymes. This study combines the insilico docking and energy-optimized pharmacophore (e-pharmacophore) mapping of several known HDACi's to identify the structural variants that are significant for the interactions against each of the four class I HDAC enzymes. Our hybrid approach shows that all the inhibitors with at least one aromatic ring in their linker regions hold higher affinities against the target enzymes, while those without any aromatic rings remain as poor binders. We hypothesize the e-pharmacophore models for the HDACi's against all the four Class I HDAC enzymes which are not reported elsewhere. The results from this work will be useful in the rational design and virtual screening of more isoform specific HDACi's against the class I HDAC family of proteins.  相似文献   
46.
Escherichia coli Hsp31, encoded by hchA, is a heat-inducible molecular chaperone. We found that Hsp31 undergoes a conformational change via temperature-induced unfolding, generating a high molecular weight (HMW) form with enhanced chaperone activity. Although it has previously been reported that some subunits of the Hsp31 crystal structure show structural heterogeneity with increased hydrophobic surfaces, Hsp31 basically forms a dimer. We found that a C-terminal deletion (CΔ19) of Hsp31 exhibited structurally and functionally similar characteristics to that of the HMW form. Both the CΔ19 and HMW forms achieved a structure with considerably more β-sheets and less α-helices than the native dimeric form, exposing a portion of its hydrophobic surfaces. The structural alterations were determined from its spectral changes in circular dichroism, intrinsic fluorescence of tryptophan residues, and fluorescence of bis-ANS binding to a hydrophobic surface. Interestingly, during thermal transition, the dimeric Hsp31 undergoes a conformational change to the HMW species via the CΔ19 structure, as monitored with near-UV CD spectrum, implying that the CΔ19 resembles an intermediate state between the dimer and the HMW form. From these results, we propose that Hsp31 transforms itself into a fully functional chaperone by altering its tertiary and quaternary structures.  相似文献   
47.
Extracellular-superoxide dismutase (EC-SOD) is a major SOD isozyme mainly present in the vascular wall and plays an important role in normal redox homeostasis. We previously showed the significant reduction or induction of EC-SOD during human monocytic U937 or THP-1 cell differentiation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively; however, its cell-specific expression and regulation have not been fully elucidated. It has been reported that epigenetic factors, such as DNA methylation and histone modification, are involved in several kinds of gene regulation. In this study, we investigated the involvement of epigenetic factors in EC-SOD expression and determined high levels of DNA methylation within promoter and coding regions of EC-SOD in THP-1 cells compared to those in U937 cells. Moreover, treatment with a DNA methyltransferase inhibitor, 5-azacytidine, significantly induced the expression of EC-SOD in THP-1 cells, indicating the importance of DNA methylation in the suppression of EC-SOD expression; however, the DNA methylation status did not change during THP-1 cell differentiation induced by TPA. On the other hand, we detected histone H3 and H4 acetylation during differentiation. Further, pretreatment with histone acetyltransferase inhibitors, CPTH2 or garcinol, significantly suppressed the TPA-inducible EC-SOD expression. We also determined the epigenetic suppression of EC-SOD in peripheral blood mononuclear cells. Treatment with granulocyte macrophage colony-stimulating factor (GM-CSF)/granulocyte-CSF induced that expression. Overall, these findings provide novel evidence that cell-specific and TPA-inducible EC-SOD expression are regulated by DNA methylation and histone H3 and H4 acetylation in human monocytic cells.  相似文献   
48.
Abstract

We have synthesized two RNA fragments: a 42-mer corresponding to the full loop I sequence of the loop I region of ColE1 antisense RNA (RNA I), plus three additional Gs at the 5′-end, and a 31-mer which has 11 5′-end nucleotides (G(-2)-U9) deleted. The secondary structure of the 42-mer, deduced from one- and two-dimensional NMR spectra, consists of a stem of 11 base-pairs which contains a U-U base-pair and a bulged C base, a 7 nucleotide loop, and a single-stranded 5′ end of 12 nucleotides. The UV-melting study of the 42-mer further revealed a multi-step melting behavior with transition temperatures 32°C and 71°C clearly discernible. In conjunction with NMR melting study the major transition at 71°C is assigned to the overall melting of the stem region and the 32°C transition is assigned to the opening of the loop region. The deduced secondary structure agrees with that proposed for the intact RNA I and provides structural bases for understanding the specificity of RNase E.  相似文献   
49.
Histone deacetylases (HDACs) play important roles in fundamental cellular processes, and HDAC inhibitors are emerging as promising cancer therapeutics. p73, a member of the p53 family, plays a critical role in tumor suppression and neural development. Interestingly, p73 produces two classes of proteins with opposing functions: the full-length TAp73 and the N-terminally truncated ΔNp73. In the current study, we sought to characterize the potential regulation of p73 by HDACs and found that histone deacetylase 1 (HDAC1) is a key regulator of TAp73 protein stability. Specifically, we showed that HDAC1 inhibition by HDAC inhibitors or by siRNA shortened the half-life of TAp73 protein and subsequently decreased TAp73 expression under normal and DNA damage-induced conditions. Mechanistically, we found that HDAC1 knockdown resulted in hyperacetylation and inactivation of heat shock protein 90, which disrupted the interaction between heat shock protein 90 and TAp73 and thus promoted the proteasomal degradation of TAp73. Functionally, we found that down-regulation of TAp73 was required for the enhanced cell migration mediated by HDAC1 knockdown. Together, we uncover a novel regulation of TAp73 protein stability by HDAC1-heat shock protein 90 chaperone complex, and our data suggest that TAp73 is a critical downstream mediator of HDAC1-regulated cell migration.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号