首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3720篇
  免费   229篇
  国内免费   358篇
  2024年   12篇
  2023年   81篇
  2022年   136篇
  2021年   158篇
  2020年   130篇
  2019年   143篇
  2018年   147篇
  2017年   130篇
  2016年   115篇
  2015年   156篇
  2014年   208篇
  2013年   335篇
  2012年   160篇
  2011年   192篇
  2010年   142篇
  2009年   183篇
  2008年   184篇
  2007年   148篇
  2006年   145篇
  2005年   143篇
  2004年   136篇
  2003年   111篇
  2002年   106篇
  2001年   77篇
  2000年   55篇
  1999年   72篇
  1998年   60篇
  1997年   56篇
  1996年   61篇
  1995年   51篇
  1994年   43篇
  1993年   39篇
  1992年   44篇
  1991年   36篇
  1990年   31篇
  1989年   15篇
  1988年   24篇
  1987年   21篇
  1986年   21篇
  1985年   28篇
  1984年   43篇
  1983年   31篇
  1982年   31篇
  1981年   17篇
  1980年   16篇
  1979年   11篇
  1978年   4篇
  1977年   7篇
  1976年   4篇
  1974年   3篇
排序方式: 共有4307条查询结果,搜索用时 15 毫秒
31.
Abstract The regulatory properties of Rhodospirillum rubrum nitrogenase reduced by either the endogenous electron donor (ferredoxin) or an artificial donor (dithionite) were examined. The nitrogenase obtained from glutamate-grown cells required activating enzyme for maximum activity with either reductant. The activating enzyme requirement of ferredoxin-dependent nitrogenase activity implies a physiological significance of the activating enzyme in R. rubrum. Rhodopseudomonas capsulata nitrogenase also required activating enzyme when dithionite was the reductant, but there appeared to be no activating enzyme requirement with ferredoxin as the reductant. Because the catalytic activity of the enzyme was very low under these conditions, the physiological significance of activating enzyme in this organism remains in question.  相似文献   
32.
Summary Voltage-clamped single nerve fibers of the frogRana esculenta were treated with the carboxyl group activating reagent N-ethoxy-carbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) in the presence of different primary amines and without added amine. Carboxyl groups form stable amide bonds with primary amines in the presence of EEDQ. EEDQ treatment reduced the sodium current considerably and irreversibly, regardless of the presence of a primary amine in the Ringer's solution. The potassium current was also reduced. After modification the reduced sodium currents inactivated slowly and incompletely. The descending branch of the sodium current-voltage relation,I Na(E), was shifted along the voltage axis in the depolarizing direction. The size of the shift was strongly dependent on the amine present during modification with EEDQ. The voltage-dependence of sodium inactivation,h x (E), was shifted to more positive values of membrane potential by EEDQ in the presence of ethylenediamine (11 mV) and glucosamine (3 mV). In contrast, a small shift to more negative potentials occurred in the presence of taurine (–3 mV) or without the addition of an amine (–2 mV). A tenfold increase of the calcium concentration still shifted theI Na(E) andh x (E) curves of the chemically modified fibers. However, these shifts were smaller than those observed on untreated fibers. The currents remaining after the modification were completely blocked by tetrodotoxin; no change of the reversal potential occurred.  相似文献   
33.
Since selenium has been found to exert a protective action against carcinogenesis in various systems, the mechanism where-by sodium selenite inhibits DNA binding of the carcinogen, 7,12-dimethylbenz[a]anthracene, was investigated. It was found that selenite preferentially reduced DNA binding occurring through ananti-dihydrodiol epoxide metabolite of this carcinogen by inhibiting the induction of an enzyme system that generates this specific reactive metabolite.  相似文献   
34.
Regulation of respiration and ATP synthesis in higher organisms: Hypothesis   总被引:12,自引:0,他引:12  
The present view on the regulation of respiration and ATP synthesis in higher organisms implies only Michaelis-Menten type kinetics and respiratory control as regulatory principles. Recent experimental observations, suggesting further regulatory mechanisms at respiratory chain complexes, are reviewed. A new hypothesis is presented implying regulation of respiration and ATP synthesis in higher organisms mainly via allosteric modification of respiratory chain complexes, in particular of cytochromec oxidase. The allosteric effectors, e.g., metabolites, cofactors, ions, hormones, and the membrane potential are suggested to change the activity and the coupling degree of cytochromec oxidase by binding to specific sites at nuclear coded subunits. Recent results on the structure and activity of cytochromec oxidase, supporting the hypothesis, are reviewed.Dedicated to Professor Dr. Carl Martius on the occasion of his 80th birthday.  相似文献   
35.
It was shown that tRNA fromAzotobacter vinelandii grown in the presence of ammonium chloride lacks ribothymidine while that grown in the absence of the ammonium salt contains this modified nucleoside. [32P]-Labelled tRNA from this organism grown in a medium containing the ammonium salt was digested with RNase T1 and the pseudouridinecontaining tetranucleotide, common to all tRNAs was isolated and analysed for the nucleoside replacing the ribothymidine. It was found to be uridine. Cells previously labelled with [32P]-phosphate in the ammonium salt medium were washed and incubated in the ammonium saltfree medium to test whether ribothymidine would be formed upon removal of the ammonium ions. Methylation of the uridine did not take place.  相似文献   
36.
The structural organization of Tetrahymena pyriformis is such that its cilia are remote from the main centers of lipid metabolism. As a result, the ciliary membrane lipid composition of cells exposed to low-temperature stress is initially unaffected by the significant metabolic changes induced in microsomal membranes. Nevertheless, changes in the ciliary membrane lipid composition can be detected during the first 4 h of cold exposure. A combination of in vivo and in vitro experiments has provided strong evidence for a substantial retailoring of ciliary phospholipid molecular species in situ in the absence of any importation of lipids from the cell interior or change in overall ciliary fatty acid composition. The mechanism responsible for the ciliary lipid changes is independent of the one(s) triggering internal acclimation responses. Our observations establish for the first time that chilling stress can simultaneously induce separate and distinctive lipid modification responses in different parts of a cell. This finding could be important in identifying the molecular ‘sensor’ capable of actuating stress-induced lipid changes.  相似文献   
37.
A comparison of specific antibodies induced by unfolded actins modified either by oxidation or by arylation of lysine residues was reported. We have focused our work on binding properties with filamentous actin and located its preferential antigenic sites for the anti-arylated-actin antibodies in the C-part of the molecule. An interference of anti-oxidized actin antibodies upon actin polymerisation has also been reported.  相似文献   
38.
Chemical modification of Rhodospirillum rubrum chromatophores by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) results in inactivation of photophosphorylation, Mg2+-ATPase, oxidative phosphorylation and ATP-driven transhydrogenase, with apparent first-order kinetics. Other energy-linked reactions such as light-driven transhydrogenase and light-dependent proton uptake were insensitive to NBD-Cl. The Ca2+-ATPase activity of the soluble coupling factor from chromatophores (R. rubrum F1) was inactivated by NBD-Cl with kinetics resembling those described for Mg2+-ATPase and photophosphorylation activities of chromatophores. Both NBD-chromatophores and NBD-R. rubrum F1 fully recovered their activities when subjected to thiolysis by dithioerythritol. Phosphoryl transfer reactions of chromatophores and Ca2+-ATPase activity of R. rubrum F1 were fully protected by 5 mM Pi against modification by NBD-Cl. ADP or ATP afforded partial protection. Analysis of the protection of Ca2+-ATPase activity by Pi indicated that NBD-Cl and Pi are mutually exclusive ligands. Spectroscopic studies revealed that tyrosine and sulfhydryl residues in R. rubrum F1 underwent modification by NBD-Cl. However, the inactivation was only related to the modification of tyrosine groups.  相似文献   
39.
In the brains of W/Wv mutant mice that have no mast cells, the histidine decarboxylase (HDC) level is as high as in the brain of congenic normal mice (+/+), but the histamine content is 53% of that of +/+ mice. The effects of alpha-fluoromethylhistidine (alpha-FMH) on the HDC activity and histamine content of the brain of W/Wv and +/+ mice were examined. In both strains, 30 min after i.p. injection of alpha-FMH the HDC activity of the brain had decreased to 10% of that in untreated mice. The histamine content decreased more gradually, and after 6 h about half of the control level remained in +/+ mice, whereas histamine had disappeared almost completely in W/Wv mice. It is concluded that the portion of the histamine content that was depleted by HDC inhibitor in a short time is derived from non-mast cells, probably neural cells. The half-life of histamine in the brain of W/Wv mice was estimated from the time-dependent decrease in the histamine content of the brain after administration of alpha-FMH: 48 min in the forebrain, 103 min in the midbrain, and 66 min in the hindbrain.  相似文献   
40.
After digestion by TaqI or nicking by DNAase I, five highly modified bacteriophage DNAs were tested as substrates for T4 DNA ligase. The DNAs used were from phages T4, XP12, PBS1, SP82, and SP15, which contain as a major base either glucosylated 5-hydroxymethylcytosine, 5-methylcytosine, uracil, 5-hydroxymethyluracil, or phosphoglucuronated, glucosylated 5-(4′,5′-dihydroxypentyl)uracil, respectively. The relative ability of cohesive-ended TaqI fragments of these DNAs and of normal, λ DNA to be ligated was as follows: λ DNA = XP12 DNA >SP82 DNA ? nonglucosylatedT4 DNA >T4 DNA = PBS1 DNA ? SP15 DNA. TaqI-T4 DNA fragments were also inefficiently ligated by Escherichia coli DNA ligase. However, annealing-independent ligation of DNAase I-nicked T4, PBS1, and λ DNAs was equally efficient. We conclude that the poor ligation of TaqI fragments of T4 and PBS1 DNAs was due to the hydroxymethylation (and glucosylation) of cytosine residues at T4's cohesive ends and the substitution of uracil residues for thymine residues adjacent to PBS1's cohesive ends destabilizing the annealing of the restriction fragments. Only SP15 DNA with its negatively charged, modified base was unable to serve as a substrate for T4 DNA ligase in an annealing-independent reaction; therefore, its modification directly interfered with enzyme binding or catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号