首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3729篇
  免费   234篇
  国内免费   355篇
  4318篇
  2024年   13篇
  2023年   85篇
  2022年   142篇
  2021年   158篇
  2020年   130篇
  2019年   143篇
  2018年   147篇
  2017年   130篇
  2016年   115篇
  2015年   156篇
  2014年   208篇
  2013年   335篇
  2012年   160篇
  2011年   192篇
  2010年   142篇
  2009年   183篇
  2008年   184篇
  2007年   148篇
  2006年   145篇
  2005年   143篇
  2004年   136篇
  2003年   111篇
  2002年   106篇
  2001年   77篇
  2000年   55篇
  1999年   72篇
  1998年   60篇
  1997年   56篇
  1996年   61篇
  1995年   51篇
  1994年   43篇
  1993年   39篇
  1992年   44篇
  1991年   36篇
  1990年   31篇
  1989年   15篇
  1988年   24篇
  1987年   21篇
  1986年   21篇
  1985年   28篇
  1984年   43篇
  1983年   31篇
  1982年   31篇
  1981年   17篇
  1980年   16篇
  1979年   11篇
  1978年   4篇
  1977年   7篇
  1976年   4篇
  1974年   3篇
排序方式: 共有4318条查询结果,搜索用时 15 毫秒
131.
The Escherichia coli CT596 prophage exclusion genes gmrS and gmrD were found to encode a novel type IV modification-dependent restriction nuclease that targets and digests glucosylated (glc)-hydroxymethylcytosine (HMC) DNAs. The protein products GmrS (36 kDa) and GmrD (27 kDa) were purified and found to be inactive separately, but together degraded several different glc-HMC modified DNAs (T4, T2 and T6). The GMR enzyme is able to degrade both alpha-glucosy-HMC T4 DNA and beta-glucosyl-HMC T4 DNA, whereas no activity was observed against non-modified DNAs including unmodified T4 cytosine (C) DNA or non-glucosylated T4 HMC DNA. Enzyme activity requires NTP, favors UTP, is stimulated by calcium, and initially produces 4 kb DNA fragments that are further degraded to low molecular mass products. The enzyme is inhibited by the T4 phage internal protein I* (IPI*) to which it was found to bind. Overall activities of the purified GmrSD enzyme are in good agreement with the properties of the cloned gmr genes in vivo and suggest a restriction enzyme specific for sugar modified HMC DNAs. IPI* thus represents a third generation bacteriophage defense against restriction nucleases of the Gmr type.  相似文献   
132.
【目的】提高杀真菌素链霉菌发酵生产恩拉霉素的产量。【方法】利用定点突变技术,对恩拉霉素生产菌株杀真菌素链霉菌F1中影响细胞次级代谢及抗生素合成的核糖体S12蛋白的编码基因rps L进行改造,将第43位的赖氨酸(Lys)分别替换为天冬酰胺(Asn)和精氨酸(Arg),并对改造菌株L-M1(Asn43)和L-M2(Arg43)的生长特性、抗生素合成以及摇瓶发酵性能进行研究。【结果】与野生型菌株相比,改造菌株的生长特性及生理生化特性均发生了明显的改变:产孢周期明显缩短,野生型菌株在MS培养基中,28°C下需要培养5-7 d后才能产生孢子,而在相同条件下,改造菌株3 d后就能产生大量的孢子;恩拉霉素产量相对提高,摇瓶发酵条件下,改造菌株L-M1(Asn43)和L-M2(Arg43)的恩拉霉素产量分别可达到1 334 U/m L和1 456 U/m L,与野生型菌株F1相比分别提高了11.9%和22.1%。【结论】通过遗传改造,恩拉霉素的产量得到了提高,为其他位点的遗传改造提供了可行性。  相似文献   
133.
We investigated the molecular mechanisms involved in the angiotensin‐converting enzyme (ACE) inhibition by (?)‐epigallocatechin‐3‐gallate (EGCg), a major tea catechin. EGCg inhibited both the ACE activity in the lysate of human colorectal cancer cells and human recombinant ACE (rh‐ACE) in a dose‐dependent manner. Co‐incubation with zinc sulfate showed no influence on the rh‐ACE inhibition by EGCg, whereas it completely counteracted the inhibitory effect of ethylenediaminetetraacetic acid, a chelating‐type ACE inhibitor. Although hydrogen peroxide was produced by the autoxidation of EGCg, hydrogen peroxide itself had little effect on the ACE activity. Conversely, the co‐incubation of EGCg with borate or ascorbic acid significantly diminished the EGCg inhibition. A redox‐cycling staining experiment revealed that rh‐ACE was covalently modified by EGCg. A Lineweaver–Burk plot analysis indicated that EGCg inhibited the ACE activity in a non‐competitive manner. These results suggested that EGCg might allosterically inhibit the ACE activity through oxidative conversion into an electrophilic quinone.  相似文献   
134.
A significant part of bacterial two-component system response regulators contains effector domains predicted to be involved in metabolism of bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a second messenger that plays a key role in many physiological processes. The intracellular level of c-di-GMP is controlled by diguanylate cyclase and phosphodiesterases activities associated with GGDEF and EAL domains, respectively. The Legionella pneumophila Lens genome displays 22 GGDEF/EAL domain-encoding genes. One of them, lpl0329, encodes a protein containing a two-component system receiver domain and both GGDEF and EAL domains. Here, we demonstrated that the GGDEF and EAL domains of Lpl0329 are both functional and lead to simultaneous synthesis and hydrolysis of c-di-GMP. Moreover, these two opposite activities are finely regulated by Lpl0329 phosphorylation due to the atypical histidine kinase Lpl0330. Indeed, Lpl0330 was found to autophosphorylate on a histidine residue in an atypical H box, which is conserved in various bacteria species and thus defines a new histidine kinase subfamily. Lpl0330 also catalyzes the phosphotransferase to Lpl0329, which results in a diguanylate cyclase activity decrease whereas phosphodiesterase activity remains efficient. Altogether, these data present (i) a new histidine kinase subfamily based on the conservation of an original H box that we named HGN H box, and (ii) the first example of a bifunctional enzyme that modulates synthesis and turnover of c-di-GMP in response to phosphorylation of its receiver domain.  相似文献   
135.
Esterase G (EstG) from dibutyl phthalate (DBP)-degrading Sphingobium sp. SM42 was immobilized on amine-functionalized supports through aldehyde tag technology. Two different sulfatase motif tags, either LCTPSR (cysteine-type) or MSAPAR (serine-type), each of which is recognized by a specific formylglycine generating enzyme (FGE), were fused to the C-terminus of EstG. The cysteine-specific FGE was derived from Pseudomonas putida KT2440 while Klebsiella sp. SLS5 provided serine-specific FGE. The EstG with serine-type aldehyde tag showed a greater immobilization yield and higher specific activity by 4.8-fold and 1.8-fold, respectively. The immobilized EstG retained over 90% of its original activity after seven cycles of usage, and exhibited significantly improved thermostability by retaining 66% activity after 1 h incubation at 60 °C. Additionally, nearly 100% and over 30% of the DBP in 10 mM and 100 mM solutions, respectively, was degraded by the immobilized EstG within 18 h.  相似文献   
136.
成骨不全是一类临床表现为骨质脆弱、易骨折等特征的罕见遗传性疾病.绝大多数(90%以上)显性患者发病系由Ⅰ型前胶原α链COL1A1和COL1A2基因突变引起胶原合成量不足 ,或结构改变.少数隐性患者发病为其他相关基因突变导致胶原翻译后过度修饰、折叠、装配和分泌过程异常.本文就成骨不全发病的遗传学及分子生物学机制作一综述.  相似文献   
137.
The pseudorabies virus (PRV) DNase is an alkaline exonuclease and endonuclease, which exhibits an Escherichia coli RecBCD-like catalytic function. The PRV DNA-binding protein (DBP) promotes the renaturation of complementary single strands of DNA, which is an essential function for recombinase. To investigate the functional and physical interactions between PRV DBP and DNase, these proteins were purified to homogeneity. PRV DBP stimulated the DNase activity, especially the exonuclease activity, in a dose-dependent fashion. Acetylation of DBP by acetic anhydride resulted in a loss of DNA-binding ability and a 60% inhibition of the DNase activity, suggesting that DNA-binding ability of PRV DBP was required for stimulating the DNase activity. PRV DNase behaved in a processive mode; however, it was converted into a distributive mode in the presence of DBP, implying that PRV DBP stimulated the dissociation of DNase from DNA substrates. The physical interaction between DBP and DNase was further analyzed by enzyme-linked immunosorbent assay, and a significant interaction was observed. Thus, these results suggested that PRV DBP interacted with PRV DNase and regulated the DNase activity in vitro.  相似文献   
138.
Neddylation is a posttranslational modification that controls diverse biological processes by covalently conjugating the ubiquitin-like protein NEDD8 to specific targets. Neddylation is commonly mediated by NEDD8-specific enzymes (typical neddylation) and, sometimes, by ubiquitin enzymes (atypical neddylation). Although typical neddylation is known to regulate protein function in many ways, the regulatory mechanisms and biological consequence of atypical neddylation remain largely unexplored. Here we report that NEDD8 conjugates were accumulated in the diseased hearts from mouse models and human patients. Proteotoxic stresses induced typical and atypical neddylation in cardiomyocytes. Loss of NUB1L exaggerated atypical neddylation, whereas NUB1L overexpression repressed atypical neddylation through promoting the degradation of NEDD8. Activation of atypical neddylation accumulated a surrogate misfolded protein, GFPu. In contrast, suppression of atypical neddylation by NUB1L overexpression enhanced GFPu degradation. Moreover, NUB1L depletion accumulated a cardiomyopathy-linked misfolded protein, CryABR120G, whereas NUB1L overexpression promoted its degradation through suppressing neddylation of ubiquitinated proteins in cardiomyocytes. Consequently, NUB1L protected cells from proteotoxic stress-induced cell injury. In summary, these data indicate that NUB1L suppresses atypical neddylation and promotes the degradation of misfolded proteins by the proteasome. Our findings also suggest that induction of NUB1L could potentially become a novel therapeutic strategy for diseases with increased proteotoxic stress.  相似文献   
139.
Enzymes are attractive catalysts for the production of optically active compounds in organic solvents. However, their often low catalytic activity in such applications hampers their practical use. To overcome this, we investigated the effectiveness of the covalent modification of alpha-chymotrypsin with methoxy poly(ethylene glycol) (PEG) with a Mw of 5,000 to enhance its activity. The model transesterification reaction between sec-phenethyl alcohol and vinyl butyrate in various neat dry organic solvents and at a controlled water activity of 0.008 in two solvents was employed to measure the effect of PEGylation on activity and enantioselectivity. Synthesis conditions were varied to obtain various conjugates with average molar ratios of PEG-to-chymotrypsin ranging from ca. 1 to 7. While the enantioselectivity increased only modestly from ca. 4.4 to 6.1 when averaging results in all solvents, PEG was very efficient in increasing the activity of alpha-chymotrypsin up to more than 400-fold compared to that of the powder lyophilized from buffer alone. The activity increase was more pronounced in apolar than in polar organic solvents and also depended on the amount of PEG bound to the enzyme. For example, the activity of the modified enzyme towards the most reactive "S" enantiomer in octane increased 440-fold but increasing the molar ratio of PEG-to-enzyme from 1.1 to 7.1 resulted in a more than twofold decrease in enzyme activity. Controlling the water activity did not prevent the drop in activity. To investigate the possible origin of the activity changes, Fourier transform infrared (FTIR) spectroscopy experiments were conducted. It was found that PEGylation reduced lyophilization-induced structural perturbations, but exposure to the organic solvents caused structural perturbations. These perturbations were more pronounced in polar than in apolar solvents. The pronounced activity drop in polar solvents at increasing PEG-modification levels correlated with an increasing level of solvent-induced structural perturbations. This correlation was less pronounced in apolar solvents where both, activity drop and structural perturbations, were less pronounced at increasing PEGylation levels. In summary, PEG-modified alpha-chymotrypsin might be an interesting system to catalyze reactions, particularly in apolar organic solvents.  相似文献   
140.
Summary The distribution of tyrosinated and detyrosinated tubulin in microtubule arrays of pine and onion cells was investigated by immunofluorescence techniques. Staining of isolated cells and methacrylate sections ofPinus radiata andAllium cepa root tips indicated that all microtubule structures contained tyrosinated tubulin but not the posttranslationally modified detyrosinated tubulin. The detyrosinated tubulin epitope was, however, created in vitro by treating both sections and fixed whole cells with carboxypeptidase A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号