首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   3篇
  国内免费   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2015年   4篇
  2014年   11篇
  2013年   17篇
  2012年   17篇
  2011年   17篇
  2010年   16篇
  2009年   16篇
  2008年   14篇
  2007年   18篇
  2006年   14篇
  2005年   18篇
  2004年   15篇
  2003年   13篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   7篇
  1998年   8篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   7篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有307条查询结果,搜索用时 78 毫秒
171.
A gene for a putative two-component histidine kinase, which is homologous to os-1 from Neurospora crassa, was cloned and sequenced from the plant-pathogenic fungus Cochliobolus heterostrophus. The predicted protein possessed the conserved histidine kinase domain, the response regulator domain, and six tandem repeats of 92-amino-acids at the N-terminal end that are found in histidine kinases from other filamentous fungi. Introduction of the histidine kinase gene complemented the deficiency of the C. heterostrophus dic1 mutant, suggesting that the Dic1 gene product is a histidine kinase. Dic1 mutants are resistant to dicarboximide and phenylpyrrole fungicides, and they are sensitive to osmotic stress. We previously classified dic1 alleles into three types, based on their phenotypes. To explain the phenotypic differences among the dic1 mutant alleles, we cloned and sequenced the mutant dic1 genes and compared their sequences with that of the wild-type strain. Null mutants for Dic1, and mutants with a deletion or point mutation in the N-terminal repeat region, were highly sensitive to osmotic stress and highly resistant to both fungicides. A single amino acid change within the kinase domain or the regulator domain altered the sensitivity to osmotic stress and conferred moderate resistance to the fungicides. These results suggest that this predicted protein, especially its repeat region, has an important function in osmotic adaptation and fungicide resistance.Communicated by C. A. M. J. J. van den Hondel  相似文献   
172.
173.
174.
During a survey of two-component system genes, a list of neighboring histidine kinase and response regulator genes, encoded on the same strand, was compiled from over 200 fully sequenced bacteria. It was observed that many gene pairs overlapped, and although such overlaps can potentially occur in two phases (relative reading frames), one phase predominated for overlaps of seven or more nucleotides. Preference for a particular phase cannot be explained by arguments of sequence restraint (mutations in one gene differentially affect an overlapping gene, depending on phase). We have therefore investigated a potential explanation of the observed phase bias. For phase +1 gene overlaps, simulated point mutations in the overlapping region result in more severe changes to the downstream gene product than to the upstream gene product; vice versa in phase +2. Additionally, codon usage frequencies in nonoverlapping regions are more similar to those at the end of the upstream gene than the beginning of the downstream gene in overlaps. Taking both observations together, we propose that new gene overlaps generally arise by N-terminal extension of a downstream gene, creating a novel sequence at the start of the downstream gene. Sequence changes in this newly coding sequence will alter the sequences of both the new and the original coding sequence (the C-terminal region of the upstream gene). However, these changes will be less detrimental to the original coding sequence if the two genes overlap in phase +1, leading to selective retention during evolution of phase +1 overlaps relative to phase +2 overlaps. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Supplementary Information: The gene list and overlap dataset can be downloaded from the journal’s web site (). [Reviewing Editor: Dr. Hector Musto]  相似文献   
175.
Kang HW  Moon HJ  Joo SH  Lee JH 《FEBS letters》2007,581(30):5774-5780
We recently reported that a histidine (H191) in the S3-S4 loop of domain I is critical for nickel inhibition of the Cav3.2 T-type Ca2+ channel. As in Cav3.2, two histidine residues are commonly found in the IS3-IS4 loops of mammalian Cav2.3 Ca2+ channels, which are also blocked by low micromolar concentrations of nickel. We show here by site-directed mutagenesis and electrophysiology that both residues contribute to the nickel sensitivity of Cav2.3, with H183 being more critical than H179. These findings strongly suggest that both H179 and H183 in the IS3-IS4 loop are essential structural determinants required for nickel sensitive inhibition of the Cav2.3.  相似文献   
176.
Integral membrane proteins have become the focus of interest of many laboratories and structural genomics consortia, but their study is hampered by bottlenecks in production, solubilization, purification and crystallization. In our laboratory we have addressed the problem of high-level protein expression in the membrane of Escherichia coli by use of Mistic, a novel Bacillus subtilis protein, as a fusion partner. In this study we examine the effect of Mistic on protein expression and membrane integration levels of members of the E. coli histidine kinase receptor family. We find that Mistic fusion invariably increases the overall yield by targeting the cargo proteins more efficiently to the membrane and may even replace the signal sequence. Mistic fusion methods will likely be instrumental for high-level expression of other integral membrane proteins.  相似文献   
177.
Plasmodium falciparum parasites express and traffick numerous proteins into the red blood cell (RBC), where some associate specifically with the membrane skeleton. Importantly, these interactions underlie the major alterations to the modified structural and functional properties of the parasite-infected RBC. P. falciparum Erythrocyte Membrane Protein 3 (PfEMP3) is one such parasite protein that is found in association with the membrane skeleton. Using recombinant PfEMP3 proteins in vitro, we have identified the region of PfEMP3 that binds to the RBC membrane skeleton, specifically to spectrin and actin. Kinetic studies revealed that residues 38-97 of PfEMP3 bound to purified spectrin with moderately high affinity (KD(kin) = 8.5 × 10− 8 M). Subsequent deletion mapping analysis further defined the binding domain to a 14-residue sequence (IFEIRLKRSLAQVL; KD(kin) = 3.8 × 10− 7 M). Interestingly, this same domain also bound to F-actin in a specific and saturable manner. These interactions are of physiological relevance as evidenced by the binding of this region to the membrane skeleton of inside-out RBCs and when introduced into resealed RBCs. Identification of a 14-residue region of PfEMP3 that binds to both spectrin and actin provides insight into the potential function of PfEMP3 in P. falciparum-infected RBCs.  相似文献   
178.
In a Ni-resistant strain of S. cerevisiae , the histidine content of the amino acid pool was increased by culture in a Ni-supplemented medium, while the content of other amino acids was decreased. The toxicity of nickel to yeast was reduced by addition of histidine to the medium. It is concluded that histidine content plays an important role in Ni-resistance in yeast.  相似文献   
179.
Focus on phosphohistidine   总被引:1,自引:0,他引:1  
Summary. Phosphohistidine has been identified as an enzymic intermediate in numerous biochemical reactions and plays a functional role in many regulatory pathways. Unlike the phosphoester bond of its cousins (phosphoserine, phosphothreonine and phosphotyrosine), the phosphoramidate (P–N) bond of phosphohistidine has a high ΔG° of hydrolysis and is unstable under acidic conditions. This acid-lability has meant that the study of protein histidine phosphorylation and the associated protein kinases has been slower to progress than other protein phosphorylation studies. Histidine phosphorylation is a crucial component of cell signalling in prokaryotes and lower eukaryotes. It is also now becoming widely reported in mammalian signalling pathways and implicated in certain human disease states. This review covers the chemistry of phosphohistidine in terms of its isomeric forms and chemical derivatives, how they can be synthesized, purified, identified and the relative stabilities of each of these forms. Furthermore, we highlight how this chemistry relates to the role of phosphohistidine in its various biological functions.  相似文献   
180.
Synthesis of the high-affinity K+-translocating Kdp-ATPase of Escherichia coli, encoded by the kdpFABC operon, is regulated by the membrane-bound sensor kinase KdpD and the soluble response regulator KdpE. K+ limitation or a sudden increase in osmolarity induces the expression of kdpFABC. Due to the importance of K+ to maintain turgor, it has been proposed that KdpD is a turgor sensor. Although the primary stimulus that KdpD senses is unknown, alterations in membrane strain or the interaction between KdpD and membrane components might be good candidates. Here, we report a study of the influence of the membrane phospholipid composition on the function of KdpD in vivo and in vitro using various E. coli mutants defective in phospholipid biosynthesis. Surprisingly, neither the lack of the major E. coli phospholipid phosphatidylethanolamine nor the drastic reduction of the phosphatidylglycerol/cardiolipin content influenced induction of kdpFABC expression significantly. However, in vitro reconstitution experiments with synthetic phospholipids clearly demonstrated that KdpD kinase activity is dependent on negatively charged phospholipids, whereas the structure of the phospholipids plays a minor role. These results indicate that electrostatic interactions are important for the activity of KdpD. Received: 29 March 1999 / Accepted: 26 July 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号