首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7551篇
  免费   476篇
  国内免费   286篇
  8313篇
  2024年   4篇
  2023年   100篇
  2022年   166篇
  2021年   198篇
  2020年   165篇
  2019年   194篇
  2018年   294篇
  2017年   147篇
  2016年   155篇
  2015年   184篇
  2014年   519篇
  2013年   550篇
  2012年   313篇
  2011年   445篇
  2010年   497篇
  2009年   562篇
  2008年   564篇
  2007年   570篇
  2006年   496篇
  2005年   416篇
  2004年   343篇
  2003年   315篇
  2002年   274篇
  2001年   136篇
  2000年   119篇
  1999年   101篇
  1998年   117篇
  1997年   74篇
  1996年   44篇
  1995年   53篇
  1994年   49篇
  1993年   37篇
  1992年   25篇
  1991年   10篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   7篇
  1984年   3篇
  1983年   7篇
  1982年   7篇
  1981年   7篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   1篇
排序方式: 共有8313条查询结果,搜索用时 15 毫秒
31.
Dahiya M  Rajamohan G  Dikshit KL 《FEBS letters》2005,579(7):1565-1572
Presence of isolated beta or betagamma domains of streptokinase (SK) increased the catalytic activity of staphylokinase (SAK)-plasmin (Pm) complex up to 60%. In contrast, fusion of SK beta or betagamma domains with the C-terminal end of SAK drastically reduced the catalytic activity of the activator complex. The enhancement effect mediated by beta or betagamma domain on Pg activator activity of SAK-Pm complex was reduced greatly (45%) in the presence of isolated kringles of Pg, whereas, kringles did not change cofactor activity of SAK fusion proteins (carrying beta or betagamma domains) significantly. When catalytic activity of SAK-microPm (catalytic domain of Pm lacking kringle domains) complex was examined in the presence of isolated beta and betagamma domains, no enhancement effect on Pg activation was observed, whereas, enzyme complex formed between microplasmin and SAK fusion proteins (SAKbeta and SAKbetagamma) displayed 50-70% reduction in their catalytic activity. The present study, thus, suggests that the exogenously present beta and betagamma interact with Pg/Pm via kringle domains and elevate catalytic activity of SAK-Pm activator complex resulting in enhanced substrate Pg activation. Fusion of beta or betagamma domains with SAK might alter these intermolecular interactions resulting in attenuated functional activity of SAK.  相似文献   
32.
L Yan  A Wang  L Chen  W Shang  M Li  Y Zhao 《Gene》2012,506(2):350-354
The present study investigated the expression of the apoptosis-related genes fas-associated via death domain (FADD) and Bcl-2 in the endometrium during the window of implantation in polycystic ovary syndrome (PCOS) patients. The aim was to explore the role of cell apoptosis in endometrial receptivity during this period. The subjects were divided into experimental and control group. The experimental group comprised 12 infertile women with PCOS, and the control group comprised 12 women who were infertile because of tubal pathological factors but had normal menstrual cycles. Endometria were collected by biopsy 7d after ovulation. Six samples from each group were randomly selected and subjected to gene chip analyses. The expression of endometrial FADD and Bcl-2 was determined by immunohistochemistry, and cell apoptosis was detected by the TUNEL method. Compared with the control group, 194 differentially expressed genes were found in the PCOS group, 102 of which were upregulated and 92 were downregulated. The differentially expressed genes were divided into 15 types according to function. Among the nine genes related to cell apoptosis, five (including Bcl-2) were upregulated and four were downregulated (including FADD). Bcl-2 expression during the window of implantation in the PCOS group increased compared with the control group, showing a significant difference (P<0.05). FADD expression in the PCOS group notably decreased compared with that in the control group, which also showed a significant difference (P<0.05). Cell apoptosis analysis showed a significant difference between the average apoptotic indices in the PCOS and control groups (P<0.05). Significant differences were observed between the endometrial gene expression in the PCOS and control groups. The decrease in cell apoptosis during the window of implantation in PCOS patients may be one of the causes of the reduced endometrial receptivity.  相似文献   
33.
34.
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.  相似文献   
35.
36.
Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.  相似文献   
37.
38.
We investigated the evolutionary conservation of polyglutamine binding protein-1 (PQBP-1) among Vertebrata. PQBP-1s were highly conserved and shared the same domain features including a WW domain, a polar amino acid rich domain (PRD), a nuclear localization signal (NLS), and a C-terminal domain (CTD) among Eutheria, but not always among Vertebrata. PQBP-1s of Vertebrata contained a variable region in the middle portion corresponding to the position of PRD. The full form of PRD including both 7aa and DR/ER repeats was specific to Eutheria. PRD of non-eutherian Amniota was minimal. Amphibia had no PRD. The DR/ER repeat was solo in fishes. Agnatha PRD was also rich in polar amino acids, but contained no repetitive sequence. We investigated 3 polyQ-containing proteins known to interact with PQBP-1: BRN-2, Huntingtin, and ATAXIN-1, and showed a diverse nature of protein-protein interaction in Vertebrata. There appears to be no interaction between PQBP-1 and BRN-2, Huntingtin, or ATAXIN-1 in Amphibia, while the interaction between PQBP-1 and BRN-2 is expected to be conserved among Mammalia, and the interaction between PQBP-1 and Huntingtin or ATAXIN-1 depends on the lineage in Eutheria.  相似文献   
39.
Ligand binding to the extracellular domain of the thrombopoietin receptor (TpoR) imparts a specific orientation on the transmembrane (TM) and intracellular domains of the receptors that is required for physiologic activation via receptor dimerization. To map the inactive and active dimeric orientations of the TM helices, we performed asparagine (Asn)-scanning mutagenesis of the TM domains of the murine and human TpoR. Substitution of Asn at only one position (S505N) activated the human receptor, whereas Asn substitutions at several positions activated the murine receptor. Second site mutational studies indicate that His499 near the N terminus of the TM domain is responsible for protecting the human receptor from activation by Asn mutations. Structural studies reveal that the sequence preceding His499 is helical in the murine receptor but non-helical in peptides corresponding to the TM domain of the inactive human receptor. The activating S505N mutation and the small molecule agonist eltrombopag both induce helix in this region of the TM domain and are associated with dimerization and activation of the human receptor. Thus, His499 regulates the activation of human TpoR and provides additional protection against activating mutations, such as oncogenic Asn mutations in the TM domain.  相似文献   
40.
The Src homology 2 (SH2) domain of interleukin-2 tyrosine kinase (Itk) is a critical component of the regulatory apparatus controlling the activity of this immunologically important enzyme. To gain insight into the structural features associated with the activated form of Itk, we have solved the NMR structure of the SH2 domain bound to a phosphotyrosine-containing peptide (pY) and analyzed changes in trans-hydrogen bond scalar couplings ((3h)J(NC')) that result from pY binding. Isomerization of a single prolyl imide bond in this domain is responsible for simultaneous existence of two distinct SH2 conformers. Prolyl isomerization directs ligand recognition: the trans conformer preferentially binds pY. The structure of the SH2/pY complex provides insight into the ligand specificity; the BG loop in the ligand-free trans SH2 conformer is pre-arranged for optimal contacts with the pY+3 residue of the ligand. Analysis of (3h)J(NC') couplings arising from hydrogen bonds has revealed propagation of structural changes from the pY binding pocket to the CD loop containing conformationally heterogeneous proline as well as to the alphaB helix, on the opposite site of the domain. These findings offer a structural framework for understanding the roles of prolyl isomerization and pY binding in Itk regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号