首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   35篇
  国内免费   22篇
  2024年   2篇
  2023年   9篇
  2022年   9篇
  2021年   18篇
  2020年   21篇
  2019年   26篇
  2018年   21篇
  2017年   16篇
  2016年   17篇
  2015年   22篇
  2014年   29篇
  2013年   53篇
  2012年   21篇
  2011年   20篇
  2010年   14篇
  2009年   26篇
  2008年   22篇
  2007年   24篇
  2006年   30篇
  2005年   26篇
  2004年   21篇
  2003年   20篇
  2002年   23篇
  2001年   14篇
  2000年   9篇
  1999年   11篇
  1998年   11篇
  1997年   12篇
  1996年   14篇
  1995年   12篇
  1994年   13篇
  1993年   12篇
  1992年   6篇
  1991年   9篇
  1990年   7篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   11篇
  1985年   14篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   1篇
  1975年   2篇
  1974年   3篇
  1970年   1篇
排序方式: 共有695条查询结果,搜索用时 8 毫秒
31.
ABSTRACT:?

The demand for natural and nonpersistent insecticides is increasing day by day. Plant cell cultures could be an alternative to conventional methods of production of insecticides from field-grown plants. In vitro cultured plant cells produce a wide array of insecticides as a part of their secondary metabolism. Their ability to synthesize key enzymes and the manipulation of these could lead to the enhanced production of many insecticides of industrial importance. The development of a high-yielding hairy root culture system for thiophenes, nicotine, and phytoecdysones is of considerable interest. In this article, the current literature on various factors that influence the growth, production, and secretion of six insecticidal compounds, namely, pyrethrins, azadirachtin, thiophenes, nicotine, rotenoids, and phytoecdysones which have been prospects for the scale-up of cell cultures, genetic engineering to obtain transgenic plants, and metabolically engineered plants for increased production of bio-molecules, has been discussed. Environmental safety clearance and the future prospects of application of bio-molecules for plant-derived insecticides are presented.  相似文献   
32.
Biofilms are commonly associated with an increased risk of patient infection. In peritoneal dialysis (PD), catheter associated infection, especially peritonitis, remains a clinically relevant problem. Although the presence of a biofilm is recognized in relapsing, repeat, and catheter-related peritonitis, it remains poorly characterized. In this review, an update on the role of biofilms in PD infections is presented. The emerging concept that host cells and tissue associated biofilms, in addition to the biofilms on the catheters themselves, contribute to the recalcitrance of infections is discussed. Furthermore, the evidence of biofilms on PD catheters, their developmental stages, and the possible influence of the PD environment are reviewed. The focus is given to ex vivo and in vitro studies that contribute to the elucidation of the interplay between host, microbial, and dialysis factors. The key issues that are still to be answered and the challenges to clinical practice are discussed.  相似文献   
33.
34.
Thin slices of human tissues are characterized concerning reflection and transmission in a wavelength range from 400 to 1700 nm. The results are primarily useful to find a wavelength for the detection of subjacent blood vessels during surgical procedures, especially neurological surgery. The measurements have been conducted using a customized measuring station, utilizing two halogen bulb lamps and two spectrometers. This paper focuses on creating a data base with the optical properties of artery, brain, bone, nasal mucosa, and nerve. The spectral distributions are compared among each other, similarities and differences are pointed out. Each tissue has got unique spectral characteristics, whereas typical absorption bands can be found in the overall tissues, especially hemoglobin and water absorption bands. The reflectivity maxima are typically located in the red or near‐infrared. All the transmission maxima are located between 1075 nm and 1100 nm. The measurements have been conducted at the Institute of Anatomy at the University of Leipzig. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
35.
Experimental analyses directly inform how an anatomical feature or complex functions during an organism's lifetime, which serves to increase the efficacy of comparative studies of living and fossil taxa. In the mammalian skull, food material properties and feeding behaviour have a pronounced influence on the development of the masticatory apparatus. Diet‐related variation in loading magnitude and frequency induce a cascade of changes at the gross, tissue, cellular, protein and genetic levels, with such modelling and remodelling maintaining the integrity of oral structures vis‐à‐vis routine masticatory stresses. Ongoing integrative research using rabbit and rat models of long‐term masticatory plasticity offers unique insight into the limitations of functional interpretations of fossilised remains. Given the general restriction of the palaeontological record to bony elements, we argue that failure to account for the disparity in the hierarchical network of responses of hard versus soft tissues may overestimate the magnitude of the adaptive divergence that is inferred from phenotypic differences. Second, we note that the developmental onset and duration of a loading stimulus associated with a given feeding behaviour can impart large effects on patterns of intraspecific variation that can mirror differences observed among taxa. Indeed, plasticity data are relevant to understanding evolutionary transformations because rabbits raised on different diets exhibit levels of morphological disparity comparable to those found between closely related primate species that vary in diet. Lastly, pronounced variation in joint form, and even joint function, can also characterise adult conspecifics that differ solely in age. In sum, our analyses emphasise the importance of a multi‐site and hierarchical approach to understanding determinants of morphological variation, one which incorporates critical data on performance.  相似文献   
36.
A robust method is presented for evaluating the diffusion properties of chemicals in ex vivo biological tissues. Using this method that relies only on thickness and collimated transmittance measurements, the diffusion properties of glycerol, fructose, polypropylene glycol and water in muscle tissues were evaluated. Amongst other results, the diffusion coefficient of glycerol in colorectal muscle was estimated with a value of 3.3 × 10?7 cm2/s. Due to the robustness and simplicity of the method, it can be used in other fields of biomedical engineering, namely in organ cryoprotection and food industry.   相似文献   
37.
Optical histopathology is fast emerging as a potential tool in cancer diagnosis. Fresh tissues in saline are ideal samples for optical histopathology. However, evaluation of suitability of ex vivo handled tissues is necessitated because of severe constraints in sample procurement, handling, and other associated problems with fresh tissues. Among these methods, formalin-fixed samples are shown to be suitable for optical histopathology. However, it is necessary to further evaluate this method from the point of view discriminating tissues with minute biochemical variations. A pilot Raman and Fourier transform infrared (FTIR) microspectroscopic studies of formalin-fixed tissues normal, malignant, and after-2-fractions of radiotherapy from the same malignant cervix subjects were carried out, with an aim to explore the feasibility of discriminating these tissues, especially the tissues after-2-fractions of radiotherapy from other two groups. Raman and FTIR spectra exhibit large differences for normal and malignant tissues and subtle differences are seen between malignant and after-2-fractions of radiotherapy tissues. Spectral data were analyzed by principal component analysis (PCA) and it provided good discrimination of normal and malignant tissues. PCA of data of three tissues, normal, malignant, and 2-fractions after radiotherapy, gave two clusters corresponding to normal and malignant + after-2-fractions of radiotherapy tissues. A second step of PCA was required to achieve discrimination between malignant and after-2-fractions of radiotherapy tissues. Hence, this study not only further supports the use of formalin-fixed tissues in optical histopathology, especially from Raman spectroscopy point of view, it also indicates feasibility of discriminating tissues with minute biochemical differences such as malignant and after-2-fractions of radiotherapy.  相似文献   
38.
It is well known that any quantitative (energy and protein levels) and qualitative (nature of the diet, nutrient dynamic) changes in the feeding of animals affect metabolism. Energy expenditure and feed efficiency at the whole-body level, nutrient partitioning between and within tissues and organs and, ultimately, tissue and organ characteristics are the major regulated traits with consequences on the quality of the meat and milk produced. Recent progress in biology has brought to light important biological mechanisms which explain these observations: for instance, regulation by the nutrients of gene expression or of key metabolic enzyme activity, interaction and sometimes cross-regulation or competition between nutrients to provide free energy (ATP) to living cells, indirect action of nutrients through a complex hormonal action, and, particularly in herbivores, interactions between trans-fatty acids produced in the rumen and tissue metabolism. One of the main targets of this nutritional regulation is a modification of tissue insulin sensitivity and hence of insulin action. In addition, the nutritional control of mitochondrial activity (and hence of nutrient catabolism) is another major mechanism by which nutrients may affect body composition and tissue characteristics. These regulations are of great importance in the most metabolically active tissues (the digestive tract and the liver) and may have undesirable (i.e. diabetes and obesity in humans) or desirable consequences (such as the production of fatty liver by ducks and geese, and the production of fatty and hence tasty meat or milk with an adapted fatty acid profile).  相似文献   
39.
A procedure for analysis of melanin‐pigmented tissues based on alkaline hydrogen peroxide degradation coupled with high‐performance liquid chromatography (HPLC) ultraviolet determination of pyrrole‐2,3,5‐tricarboxylic acid (PTCA) for eumelanin and 6‐(2‐amino‐2‐carboxyethyl)‐2‐carboxy‐4‐hydroxybenzothiazole (BTCA) and 1,3‐thiazole‐2,4,5‐tricarboxylic acid for pheomelanin was recently developed. Despite advantages related to the degradation conditions and sample handling, a decrease of the reproducibility and resolution was observed after several chromatographic runs. We report herein an improved chromatographic methodology for simultaneous determination of PTCA and BTCA as representative markers of eumelanin and pheomelanin, respectively, based on the use of an octadecylsilane column with polar end‐capping with 1% formic acid (pH 2.8)/methanol as the eluant. The method requires conventional HPLC equipments and gives very good peak shapes and resolution, without need of ion pair reagents or high salt concentrations in the mobile phase. The intra‐assay precision of the analytical runs was satisfactory with CV values ≤4.0% (n = 5) for the two markers which did not exceed 8% after 50 consecutive injections on the column over 1 week. The peak area ratios at 254 and 280 nm (A280/A254: PTCA = 1.1, BTCA = 0.6) proved a valuable parameter for reliable identification of the structural markers even in the most complex degradation mixtures. The method can be applied to various eumelanin and pheomelanin pigmented tissues, including mammalian hair, skin and irides, and is amenable to be employed in population screening studies.  相似文献   
40.
Ionizing radiation plays a central role in several medical and industrial purposes. In spite of the beneficial effects of ionizing radiation, there are some concerns related to accidental exposure that could pose a threat to the lives of exposed people. This issue is also very critical for triage of injured people in a possible terror event or nuclear disaster. The most common side effects of ionizing radiation are experienced in cancer patients who had undergone radiotherapy. For complete eradication of tumors, there is a need for high doses of ionizing radiation. However, these high doses lead to severe toxicities in adjacent organs. Management of normal tissue toxicity may be achieved via modulation of radiation responses in both normal and malignant cells. It has been suggested that treatment of patients with some adjuvant agents may be useful for amelioration of radiation toxicity or sensitization of tumor cells. However, there are always some concerns for possible severe toxicities and protection of tumor cells, which in turn affect radiotherapy outcomes. Selenium is a trace element in the body that has shown potent antioxidant and radioprotective effects for many years. Selenium can potently stimulate antioxidant defense of cells, especially via upregulation of glutathione (GSH) level and glutathione peroxidase activity. Some studies in recent years have shown that selenium is able to mitigate radiation toxicity when administered after exposure. These studies suggest that selenium may be a useful radiomitigator for an accidental radiation event. Molecular and cellular studies have revealed that selenium protects different normal cells against radiation, while it may sensitize tumor cells. These differential effects of selenium have also been revealed in some clinical studies. In the present study, we aimed to review the radiomitigative and radioprotective effects of selenium on normal cells/tissues, as well as its radiosensitive effect on cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号