首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1992年   2篇
  1988年   1篇
  1976年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
21.
 As in most taxa that contain gametophytic apomicts, all of the apomictic biotypes studied so far in the genus Hieracium subgenus Pilosella have been recorded as polyploids. As part of a study of variation in apomictically derived populations of H. aurantiacum, a diploid plant was identified. Apospory, the mechanism of apomixis typically observed in this taxon, was observed in this plant. Unreduced megagametophytes at various developmental stages were commonly observed in the developing ovules, and endosperm formation was autonomous. The eventual seed set, however, was low. This appears to have been due to the proliferation of competing megagametophytes and embryos within each ovule. Pollen sterility was also observed, primarily resulting from the dysfunction of microgametogenesis at the uninucleate stage. Received: 3 September 1996 / Revision accepted: 21 March 1997  相似文献   
22.
23.
JARVIS, C. E., 1992. The Linnaean Plant Name Typification Project. Carl Linnaeus (1707–1778) introduced the consistent use of binomial names for plants and animals. As he published more than 9000 plant names, valid under the International Code of Botanical Nomenclature, their application is of considerable importance. Professor Steam's reputation as a Linnaean scholar brought him literally hundreds of requests, from all over the world, for help in the interpretation of Linnaean names. In 1980 he was instrumental in obtaining funding for a pilot study for the typification of Linnaean names. The Project was subsequently core-funded by the Natural History Museum, and has developed into an international Project that has attracted support and collaboration on a worldwide basis. The aims, methodology and progress of the Project are reviewed, and the names Crepis barbata L. and Hieracium capense L. are lectotypified.  相似文献   
24.
25.
Three heathand species, Antennaria dioica, Arnica montana and Hieracium pilosella, were artificially rained with ammonium sulphate solutions at increasing concentrations in a greenhouse experiment. The same species were also artificially rained with increasing ammonium sulphate solutions under field conditions. Dry weights of the plants in the field experiments did not change with increasing ammonium sulphate applications. Nor did the dry weights of plants in the greenhouse experiments change with increasing ammonium sulphate concentrations, except for Arnica montana, which showed an increase in dry weight. VAM infection percentage of Antennaria dioica increased in both the greenhouse and the field experiment. The results of the field experiment show that VAM infection rates are reduced after two years of artificial rain in the plant species Arnica montana, which grows naturally under nutrient poor conditions and is presently declining in its natural habitat in the Netherlands. In the greenhouse experiment, VAM infection of Arnica montana did not change with increasing ammonium sulphate concentrations. VAM infection rates of Hieracium pilosella, which presently is not declining, did not change with increasing ammonium sulphate concentrations.  相似文献   
26.
Hieracium busambarense (Asteraceae), a new species from calcareous-dolomite cliffs of Rocca Busambra (western Sicily, Italy) is described and illustrated here.  相似文献   
27.
Studying patterns of species invasions over time at multiple spatial scales may help us to elucidate important factors driving those patterns and how they change according to temporal or spatial resolution. Here we provide a large, long‐term, landscape‐scale study of the invasion of three Hieracium species using a dataset that encompasses vegetation change on 124 transects over 25 years across the lower eastern South Island of New Zealand. We investigated the relationships between key environmental and ecological factors and the invasion trajectories of H. lepidulum, H. pilosella and H. praealtum, at two spatial scales: (i) among‐transect colonization and (ii) within‐transect changes in frequency and per cent cover. Our results show that the colonization and spread of Hieracium species among and within transects reflect (i) the importance of initial environmental and biological conditions, (ii) that our sampling captured different periods of the invasion trajectories of each of the three species, and (iii) the effects of differences in life histories of the three species.  相似文献   
28.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   
29.
Summary On colliery heaps in northern France, a tall grassland community dominated by Arrhenatherum elatius, give place to a thin grassland community in which Hieracium pilosella is very abundant. It has been claimed that Hieracium pilosella is an allelopathic species and this phenomenon has been investigated as an explanation of this phase of plant succession. The importance of osmotic pressure in tested plant extracts is demonstrated and may be responsible for presumed allelopathy. Two phytotoxic compounds have been revealed in roots+rhizomes of Hieracium pilosella (umbelliferon and apigenin-glucoside). A third phytotoxic compound was exuded by roots in hydroponic cultures (7-glucoside-umbelliferon or skimin). However no toxicity of soil has been found and no phytotoxic compounds appeared to be present in the soil under Hieracium pilosella. Experimental mixed cultures (sterile or non-sterile conditions) reveal suppression of Hieracium pilosella by Arrhenatherum elatius rather than the reverse. Allelopathy cannot be invoked to explain this plant succession.  相似文献   
30.
Sexual and apomictic development in Hieracium   总被引:2,自引:2,他引:0  
 Most members of the genus Hieracium are apomictic and set seed without fertilization, but sexual forms also exist. A cytological study was conducted on an apomictic accession of H. aurantiacum (A3.4) and also H. piloselloides (D3) to precisely define the cellular basis for apomixis. The apomictic events were compared with the sexual events in a self-incompatible isolate of H. pilosella (P4). All plants were maintained as vegetatively propagated lines each derived from a single plant. Sexual P4 exhibited characteristic events of polygonum-type embryo sac formation, showed no latent apomitic tendencies, and depended upon fertilization to set seed. In contrast, D3 and A3.4 were autonomous aposporous apomicts, forming both embryo and endosperm spontaneously inside an unreduced embryo sac. The two apomicts exhibited distinct mechanisms, but variation was also observed within each apomictic line. Seeds from apomicts often contained more than one embryo. A degree of developmental instability was also observed amongst germinated seedlings and included variation in meristem and cotyledon number, altered phyllotaxis, callus formation, and seedling fusion. In most cases abnormal seedlings developed into normal plants. Such phenomena were not observed following germination of hybrid seeds derived from crosses between sexual P4 and the apomictic plants. The three plants can now be used in inheritance studies and also to investigate the molecular mechanisms controlling apomixis. Received: 11 February 1998 / Revision accepted: 23 July 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号