首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14559篇
  免费   842篇
  国内免费   719篇
  16120篇
  2024年   27篇
  2023年   212篇
  2022年   345篇
  2021年   419篇
  2020年   431篇
  2019年   631篇
  2018年   540篇
  2017年   348篇
  2016年   352篇
  2015年   481篇
  2014年   933篇
  2013年   1119篇
  2012年   700篇
  2011年   984篇
  2010年   685篇
  2009年   692篇
  2008年   745篇
  2007年   751篇
  2006年   661篇
  2005年   611篇
  2004年   524篇
  2003年   473篇
  2002年   415篇
  2001年   259篇
  2000年   243篇
  1999年   206篇
  1998年   190篇
  1997年   144篇
  1996年   148篇
  1995年   126篇
  1994年   148篇
  1993年   108篇
  1992年   121篇
  1991年   116篇
  1990年   81篇
  1989年   78篇
  1988年   62篇
  1987年   72篇
  1986年   67篇
  1985年   118篇
  1984年   116篇
  1983年   79篇
  1982年   93篇
  1981年   97篇
  1980年   89篇
  1979年   62篇
  1978年   58篇
  1977年   42篇
  1976年   45篇
  1974年   26篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Forskolin (FSK) is known as an up-regulator of intracellular cAMP and inhibitor of cancer growth and metastasis. The effects of FSK on the metastasis potential and its mechanisms were studied using a human hepatocarcinoma cell line, H7721. It was found that FSK stimulated cell growth, increased cAMP in the cells, and enhanced the metastasis-related phenotypes, including adhesion to laminin (Ln) and human umbilical vein epithelial cells (HUVEC), chemotactic migration and invasion. These effects were supposed to result from the increase of the SLex expression induced by FSK, since only the monoclonal antibody of SLex showed a significant attenuation of the enhanced metastasis-associated phenotypes. Using H7721 cells transfected with the sense or antisense cDNA of protein kinase B (PKB) and some inhibitors of signal transduction, it was discovered that FSK up-regulated the expression of SLex via PKB, but it was independent of phosphotidylinositide-3-kinase (PI-3K). A subtype of atypical protein kinase C (-PKC) might also participate in the up-regulation of SLex expression by FSK, and cAMP/PKA pathway is a negative regulator of SLex expression on H7721 cells. It can be concluded that FSK shows a metastasis-promoting effect ex vivo.  相似文献   
992.
Recently, we reported that the herbal drug St. John's Wort is a potent inhibitor of UV-induced HIV-LTR activation in stably transfected HIVcat/HeLa cells [35]. Our previous studies have demonstrated that the activation of p38 MAP kinase (stress-activated protein kinase-2) and NF-B are both required for a full UV-induced HIV gene expression response. In this study we have investigated the mechanism by which curcumin inhibits UV-activated HIV-LTR gene expression. We found that treatment of HIVcat/HeLa cells with micromolar concentrations of curcumin completely abolished UV activation of HIV gene expression. Curcumin treatment at similar doses as those used to inhibit HIV gene expression also effectively blocked UV activation of NF-B, as demonstrated by electrophoretic mobility shift assay. In contrast, curcumin did not inhibit UV-induced phosphorylation of p38 MAP kinase. This observation was also supported by findings that curcumin did not inhibit UV-induced phosphorylation of CREB/ATF-1 and ATF-2. Although curcumin was ineffective in preventing UV-induced p44/42 MAP kinase phosphorylation, the JNK (1 and 2) and AP-1 activation were efficiently blocked by curcumin in HeLa cells. We conclude that the mechanism by which curcumin modulates UV activation of HIV-LTR gene expression mainly involves the inhibition of NF-B activation.  相似文献   
993.
Burkholderia cepacia causes pulmonary infection with high mortality in cystic fibrosis (CF) patients which is likely to involve interaction with respiratory epithelium. In this study the pro-inflammatory properties of B. cepacia were examined using a range of respiratory epithelial cell lines. B. cepacia and cell-free culture supernatants were used to stimulate cell lines with (SigmaCFTE29o- and IB3) and without (A549) the CF transmembrane conductance regulator mutation (CFTR), together with corrected cell lines (C38 and S9). Interleukin (IL)-6 and IL-8, but not GM-CSF or IL-1beta, were released from all the cell lines whereas PGE(2) (prostaglandin E(2)) was released from the A549, IB3 and S9 cell lines only. Nuclear factor (NF)-kappaB activation preceded cytokine release and suppression of NF-kappaB activity diminished cytokine release. These studies indicated that B. cepacia secretory products are potent pro-inflammatory agents for respiratory epithelium and suggest functional CFTR is not required for cytokine or prostanoid responses.  相似文献   
994.
Previously, we have reported that insulin induces the expression of the dual-specificity tyrosine phosphatase Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and that this may represent a negative feedback mechanism to regulate insulin-stimulated MAP kinase activity. In this work, the mechanism of regulation of MKP-1 expression by insulin was examined, particularly the role of the MAP kinase superfamily. Inhibition of the ERK pathway attenuated insulin-stimulated MKP-1 mRNA expression. Expression of dominant negative molecules of the JNK pathway also abolished insulin-stimulated MKP-1 expression. However, inhibition of p38MAPK activity by SB202190 had no effect on insulin-stimulated MKP-1 induction. Simultaneous inhibition of the ERK and JNK pathways abolished the ability of insulin to stimulate MKP-1 expression, however, this combined inhibition was neither additive nor synergistic, suggesting these pathways converge to act on a common final effector. In conclusion, induction of MKP-1 mRNA expression in Hirc B cells by insulin requires activation of both the ERK and JNK pathways, but not p38MAPK.  相似文献   
995.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   
996.
Voriconazole (Vfend™) is a new triazole that currently is undergoing phase III clinical trials. This review summarizes the published data obtained by NCCLS methods on the in vitro antifungal activity of voriconazole in comparison to itraconazole, amphotericin B, fluconazole, ketoconazole and flucytosine. Voriconazole had fungistatic activity against most yeasts and yeastlike species (minimum inhibitory concentrations [MICs] <2 μg/ml) that was similar or superior to those of fluconazole, amphotericin B, and itraconazole. Against Candida glabrata and C. krusei, voriconazole MIC ranges were 0.03 to 8 and 0.01 to >4 μg/ml, respectively. For four of the six Aspergillus spp. evaluated, voriconazole MICs (< 0.03 to 2 μg/ml) were lower than amphotericin B (0.25 to 4 μg/ml) and similar to itraconazole MICs. Voriconazole fungistatic activity against Fusarium spp. has been variable. Against F. oxysporum and solani, most studies showed MICs ranging from 0.25 to 8 μg/ml. Voriconazole had excellent fungistatic activity against five of the six species of dimorphic fungi evaluated (MIC90s < 1.0 μg/ml). The exception was Sporothrix schenckii (MIC90s and geometric mean MICs ≥ 8 μg/ml). Only amphotericin B had good fungistatic activity against the Zygomycetes species (voriconazole MICs ranged from 2 to >32 μg/ml). Voriconazole showed excellent in vitro activity (MICs < 0.03 to 1.0 μg/ml) against most of the 50 species of dematiaceous fungi tested, but the activity of all the agents was poor against most isolates of Scedosporium prolificans and Phaeoacremonium parasiticum (Phialophora parasitica). Voriconazole had fungicidal activity against most Aspergillus spp., B. dermatitidis, and some dematiaceous fungi. In vitro/in vivo correlations should aid in the interpretation of these results. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
997.
Cancer progression is attributed in part to immune evasion strategies that include lack of co-stimulation, down-regulation of cell surface MHC molecules, and secretion of immunosuppressive factors, such as transforming growth factor-beta (TGF-beta). Gene therapy has been employed to counter these mechanisms of immune evasion by transference of B7.1, IFN-gamma or antisense TGF-beta genes into tumor cells, resulting in cell surface expression of B7.1, upregulation of MHC class I and class II molecules, or elimination of tumor-derived TGF-beta, respectively. Although each of these transgenes has been shown to alter tumorigenicity in murine models, a direct comparison of their efficacy has not been performed. In this study, we have employed a very aggressive, poorly immunogenic and highly metastatic mammary model, 4T1, to compare the efficacy of B7.1, IFN-gamma and antisense TGF-beta gene transfer in stimulating an anti-tumor response. We demonstrate that both IFN-gamma and antisense TGF-beta gene expression significantly reduced the tumorigenicity of these cells compared to mock transduced cells, with IFN-gamma having a greater effect. In contrast, B7.1 gene transfer did not affect the tumorigenicity of 4T1 cells. The anti-tumor response directed against antisense TGF-beta-expressing 4T1 tumors was mediated by CD4+ and CD8+ T cells. However, CD8+ T cells, and not CD4+ T cells, appeared to mediate the anti-tumor response against IFN-gamma-expressing tumors. Treatment of tumor-bearing animals with IFN-gamma or antisense TGF-beta gene-modified tumor cell vaccines reduced the number of clonogenic metastases to the lungs and liver compared to treatment with mock-transduced cells. Finally, in a residual disease model in which the primary tumor was excised and mice were vaccinated with irradiated tumor cells, treatment of mice with vaccinations consisting of 4T1 cells expressing both antisense TGF-beta and IFN-gamma genes was the most effective in prolonging survival.  相似文献   
998.
Study of developmental changes on hexoses metabolism in rat cerebral cortex   总被引:2,自引:0,他引:2  
We have studied the developmental changes of glucose, mannose, fructose and galactose metabolism in rat cerebral cortex. As the animals aged, glucose, mannose and fructose oxidation to CO2 increased, whereas galactose oxidation decreased. Lipid synthesis from glucose and fructose also increased with age, that from mannose decreased and galactose did not change. Cytochalasin B, a potent non-competitive inhibitor of sodium-independent glucose transport, significantly impaired glucose, mannose and galactose metabolism, but had no effect on fructose metabolism. Both galactose or fructose did not change, whereas mannose declined the glucose metabolism. Glucose decreased fructose, galactose and mannose metabolism. Our results show that besides glucose, the metabolism of mannose, galactose and fructose present developmental changes from fetal to adult age, and reinforce the literature data indicating that mannose and galactose are transported by glucose carriers, while fructose is not.  相似文献   
999.
Spermatogenesis is a highly ordered process which requires mitotic and meiotic divisions. In this work, we studied the relative changes in the levels of the two components of the M-phase promoting factor (MPF): the regulatory subunit cyclin B1 (CycB1) and its catalytic subunit cdk1, in spermatogenic cells of rats between 16 and 90 days of life. A multivariate flow cytometry analysis of forward scatter (FSC), side scatter (SSC) and DNA content was used to identify six populations of rat germ cells: spermatogonia with preleptotene spermatocytes, young pachytene spermatocytes, middle to late pachytene spermatocytes, secondary spermatocytes with doublets of round spermatids, round spermatids, and elongated spermatids. For any population studied no significant difference in the relative cellular content of CycB1 or cdk1 proteins between animals of different ages was observed. By contrast, CycB1 and cdk1 levels were different between the different populations of germ cells. CycB1 and cdk1 were rather high in young pachytene spermatocytes and culminated in late spermatocytes, i.e. just before the first meiotic division. The relative levels of the two proteins remained high in secondary spermatocytes then decreased in round spermatids at the exit of meiosis. Similar results were obtained by Western-blot analysis of total proteins obtained from lysates of elutriated fractions of spermatocytes and spermatids. MPF activity was assessed in lysates of germ cells from 32-day-old rats or adult animals using p13suc1 agarose and histone H1 as an exogenous substrate. H1 kinase activity was higher in pachytene spermatocytes than in round spermatid fractions from both adult and young rats. These results indicate that the meiotic G2/M transition is associated to high levels of CycB1 and cdk1 leading to high MPF activity irrespective of the age of the animals.  相似文献   
1000.
Echinocandin B (ECB), a lipopolypeptide used as a starting material for chemical manufacture of the anti-Candida agent LY303366, is produced by fermentation using a strain of Aspergillus nidulans. In addition to ECB, the wild-type strain also produces a significant level of sterigmatocystin (ST), a potent carcinogen structurally related to the aflatoxins. Characterization of a mutant designated A42355-OC-1 (OC-1), which is blocked in ST biosynthesis, was the result of a chromosomal translocation. The chromosomal regions containing the breakpoints of the translocation were isolated and DNA sequencing and PCR analysis of the chromosomal breakpoints demonstrated the translocation occurred within the stcW gene of the ST biosynthetic pathway, resulting in disruption of the open reading frame for this gene. Biochemical feeding studies indicate the involvement of this gene product in the conversion of averufin to 1-hydroxy versicolorone. This work demonstrates an effective synergy between classical strain improvement methods and molecular genetics. Journal of Industrial Microbiology & Biotechnology (2000) 25, 333–341. Received 27 April 2000/ Accepted in revised form 25 November 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号