首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3834篇
  免费   85篇
  国内免费   50篇
  2023年   23篇
  2022年   32篇
  2021年   42篇
  2020年   32篇
  2019年   52篇
  2018年   69篇
  2017年   37篇
  2016年   45篇
  2015年   46篇
  2014年   188篇
  2013年   225篇
  2012年   157篇
  2011年   178篇
  2010年   140篇
  2009年   113篇
  2008年   136篇
  2007年   167篇
  2006年   120篇
  2005年   145篇
  2004年   77篇
  2003年   87篇
  2002年   83篇
  2001年   44篇
  2000年   43篇
  1999年   37篇
  1998年   48篇
  1997年   41篇
  1996年   41篇
  1995年   42篇
  1994年   39篇
  1993年   26篇
  1992年   25篇
  1991年   20篇
  1990年   28篇
  1989年   27篇
  1988年   25篇
  1987年   22篇
  1985年   90篇
  1984年   185篇
  1983年   152篇
  1982年   168篇
  1981年   174篇
  1980年   116篇
  1979年   110篇
  1978年   77篇
  1977年   75篇
  1976年   46篇
  1975年   18篇
  1974年   21篇
  1973年   15篇
排序方式: 共有3969条查询结果,搜索用时 187 毫秒
21.
Exposure of spinach (Spinacia oleracea L. cv. Monosa) to 0.25 μl l?1 H2S reduced the relative growth rate by 26, 47 and 60% at 15, 18 and 25°C, respectively. Shoot to root ratio decreased in plants fumigated at 18 and 25°C. Growth of spinach was not affected by a 2-week exposure to 0.10 or 0.25 μl l?1 SO2. Both H2S and SO2 fumigation increased the content of sulfhydryl compounds and sulfate. A 2-week exposure to 0.25 μl l?1 H2S resulted in an increase in sulfhydryl and sulfate content of 250 to 450% and 63 to 248% in the shoots, respectively, depending on growth temperature. Exposure to 0.15 and 0.30 μl l?1 H2S at 20°C for 2 weeks resulted in a 46% increase in sulfate content of the shoots at 0.30 μl l?1 and no detectable increase at 0.15 μl l?1 H2S; the sulfate content of the roots increased by 195 and 145% at 0.15 and 0.30 μl l?1 H2S, respectively. Fumigation with 0.25 μl l?1 SO2 at 20°C for 2 weeks resulted in an increase in sulfhydryl content and sulfate content in the shoots of 285% and 300 to 1100%. H2S fumigation during the 12 h light period or only during the dark period resulted in identical growth reduction and accumulation of sulfhydryl compounds; they were about 50 and 67% of those observed in continuously exposed plants. H2S- and SO2-exposed plants showed an increased transpiration rate, which was mainly caused by an increased dark-period transpiration. No effect of H2S and SO2 on the water uptake of the plants and the osmotic potential of the leaves was detected. Plants fumigated with 0.25 μl l?1 H2S for 2 weeks were smaller and differed morphologically from the control plants by slightly more abaxially curved leaf margins. Cross sections of the leaves showed smaller cells at the margins and smaller and fewer air spaces. The increased transpiration in the H2S-exposed plants is discussed in relation to the observed morphological changes.  相似文献   
22.
During growth on glycerol two marine Desulfovibrio strains that can grow on an unusually broad range of substrates contained high activities of glycerol kinase, NAD(P)-independent glycerol 3-phosphate dehydrogenase and the other enzymes necessary for the conversion of dihydroxyacetone phosphate to pyruvate. Glycerol dehydrogenase and a specific dihydroxyacetone kinase were absent. During growth on dihydroxyacetone, glycerol kinase is involved in the initial conversion of this compound to dihydroxyacetone phosphate which is then further metabolized. Some kinetic properties of the partially purified glycerol kinase were determined. The role of NAD as electron carrier in the energy metabolism during growth of these strains on glycerol and dihydroxyacetone is discussed.Glycerol also supported growth of three out of four classical Desulfovibrio strains tested. D. vulgaris strain Hildenborough grew slowly on glycerol and contained glycerol kinase, glycerol 3-phosphate dehydrogenase and enzymes for the dissimilation of dihydroxyacetone phosphate. In D. gigas which did not grow on glycerol the enzymes glycerol kinase and glycerol 3-phosphate dehydrogenase were absent in lactate-grown cells.Abbreviations DHA dihydroxyacetone - DHAP dihydroxyacetone phosphate - G3P glycerol 3-phosphate - GAP glyceraldehyde 3-phosphate - 3-PGA 3-phosphoglycerate - 2-PGA 2-phosphoglycerate - 2,3-DPGA 2,3-diphosphoglycerate - PEP phosphoenolpyruvate - DH dehydrogenase - GK glycerol kinase - DHAK dihydroxyacetone kinase - TIM triosephosphate isomerase - PGK 3-phosphoglycerate kinase - PK pyruvate kinase - LDH lactate dehydrogenase - DTT dithiotreitol - HEPES 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid - PIPES piperazine-1,1-bis(2-ethane sulfonic acid) - BV2+/BV+ oxidized/reduced benzylviologen - PMS phenazine methosulfate - DCPIP 2,6-dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide  相似文献   
23.
Minesoils developed from lignite surface mining in Texas are nutrient-poor and have a high N retention capacity. A major concern of landowners and soil conservationists is the response of Coastal bermudagrass to the application of low rates of ammonium-N fertilizer on these nutrient-poor minesoils. A glasshouse study, using15N-labelled ammonium sulfate fertilizer and lignite minesoil, was conducted to measure Coastal bermudagrass biomass production and fertilizer recovery during establishment in response to clipping at 2, 4, and 8 week intervals. At N rates of 0, 40, and 80 kg N ha–1,increases in N fertilization increased Coastal bermudagrass aboveground biomass 5-fold, but showed only small increases in belowground biomass. Recovery of ammonium-N fertilizer ranged from 54 to 63%. Roots contained approximately the same N content across all fertilizer rates suggesting that young, estabilishing, Coatal bermudagrass roots reserve N until their N requirement is met. As more N is obtained above that which was needed to maintain roots, then additional N taken up by the plant was transported to aboveground plant parts for growth. Frequent clipping intensified N transport to aboveground tissues. Reduced amounts of N were contained in roots after clipping due to reductions in root growth, biomass, and resource demand. Fertilization of Coastal bermudagrass at low N rates with different N fertilizer forms influenced the distribution of N in the plant and affected N recovery by different parts of the plant.  相似文献   
24.
This paper reports that the Kurloff cell sulphated and chondroitinase AC sensitive material previously described filtered on Sepharose CL4B columns as 2 main populations with Kav of 0.25 and 0.44. Its alkaline treatment resulted in the elution of 2 peaks with Kav of 0.52 and 0.78. Their reduction in size observed after alkaline treatment and the 6-fold increase in the (35S) sulphate incorporation after addition of 0.1 mM xyloside to the incubation medium indicate that these intracellular sulphated glycosaminoglycans exist in the form of proteoglycans. They were characterized by their resistance to degradation by pronase, papain or cathepsin D, as assessed by gel filtration chromatography on Sepharose CL6B or CL4B. After the glycosaminoglycans were digested with chondroitinase AC, thin-layer chromatography analysis indicated the presence of delta di-4S and delta di-6S in a ratio of 7:1. The presence of such protease-resistant proteochondroitin sulphate in intracytoplasmic granules of both Kurloff cells and other natural killer cell types is emphasized.  相似文献   
25.
26.
Metabolically 35S-labeled proteoglycans were isolated from cell-associated matrices and media of confluent cultures of human normal transitional epithelial cells and HCV-29T transitional carcinoma cells. On Sepharose CL-4B columns, the cell-associated proteoglycans synthesized from both cell types separated into three identical size classes, termed CI, CII, and CIII. Normal epithelial cell C-fractions eluted in a 22:34:45 proportion and contained 64%, 64%, and 72% heparan sulfate, whereas corresponding HCV-29T fractions eluted in a 29:11:60 proportion, and contained 91%, 77%, and 70% heparan sulfate, respectively. Medium proteoglycans from normal cells separated into two size classes in a proportion of 6:94 and were composed of 35% and 50% heparan sulfate. HCV-29T medium contained only one size class of proteoglycans consisting of 23% heparan sulfate. The remaining percentages were accounted for by chondroitin/dermatan sulfate. On isopycnic CsCl gradients, proteoglycan fractions from normal cells had buoyant densities that were higher than the corresponding fractions from HCV-29T cells. DEAE-Sephacel chromatography showed that cell and medium associated heparan sulfate from HCV-29T cells was consistently of lower charge density (undersulfated) than that from normal epithelial cells. In contrast, the chondroitin/dermatan sulfate of HCV-29T was of a charge density similar to that of normal cells. These as well as other structural and compositional differences in the proteoglycan may account, at least in part, for the altered behavioral traits of highly invasive carcinoma cells.  相似文献   
27.
C1q, a collagen-like complement protein, was purified from the serum of a ddermatosparactic calf which lacks procollagen N-terminal proteinase (pN-proteinase). The specific hemolytic activity of the serum Clq from the dermatosparactic animal was identical to that of C1q from a normal calf. Gel-filtration of serum from dermatosparactic calf, on Sepharose 6B, showed the presence of C1q-antigenic material at only one position which was identical to the elution position of normal bovine C1q. No differdence, under dissociating conditions, could be seen in the size of the chains of C1q in specific immunoprecipitates isolated from the sera of dermatosparactic and normal animals, as judged by polyacrylamidegel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS). The C1q from the dermatosparactic animal showed the same N-terminal amino acid and typtic-digest peptide pattern on HPLC as C1q from the normal calf. These results strongly suggest that pN-proteinase is not involved in the extracellular processing of C1q.  相似文献   
28.
Cell surface heparan sulfate proteoglycan and the neoplastic phenotype   总被引:3,自引:0,他引:3  
Cell surface proteoglycans are strategically positioned to regulate interactions between cells and their surrounding environment. Such interactions play key roles in several biological processes, such as cell recognition, adhesion, migration, and growth. These biological functions are in turn necessary for the maintenance of differentiated phenotype and for normal and neoplastic development. There is ample evidence that a special type of proteoglycan bearing heparan sulfate side chains is localized at the cell surface in a variety of epithelial and mesenchymal cells. This molecule exhibits selective patterns of reactivity with various constituents of the extracellular matrix and plasma membrane, and can act as growth modulator or as a receptor. Certainly, during cell division, membrane constituents undergo profound rearrangement, and proteoglycans may be intimately involved in such processes. The present work will focus on recent advances in our understanding of these complex macromolecules and will attempt to elucidate the biosynthesis, the structural diversity, the modes of cell surface association, and the turnover of heparan sulfate proteoglycans in various cell systems. It will then review the multiple proposed roles of this molecule, with particular emphasis on the binding properties and the interactions with various intracellular and extracellular elements. Finally, it will focus on the alterations associated with the neoplastic phenotype and will discuss the possible consequences that heparan sulfate may have on the growth of normal and transformed cells.  相似文献   
29.
The protonmotive force in several sulfate-reducing bacteria has been determined by means of radiolabelled membrane-permeant probes (tetraphenyl-phosphonium cation, TPP+, for , and benzoate for pH). In six of ten freshwater strains tested only the pH gradient could be determine, while the membrane potential was not accessible due to nonspecific binding of TPP+. The protonmotive force of the other four strains was between –110 and –155 mV, composed of a membrane potential of –80 to –140 mV and a pH gradient between 0.25 and 0.8 (inside alkaline) at pHout=7. In Desulfobulbus propionicus the pH gradient decreased with rising external pH values. This decrease, however, was compensated by an increasing membrane potential. Sulfate, which can be highly accumulated by the cells, did not affect the protonmotive force, if added in concentrations of up to 4 mM. The highest sulfate accumulation observed (2500-fold), which occurred at external sulfate concentrations below 5 M, could be explained by a symport of three protons per sulfate, if equilibrium with the protonmotive force was assumed. At higher sulfate concentrations the accumulation decreased and suggested an electroneutral symport of two protons per sulfate. At sulfate concentrations above 500 M, the cells stopped sulfate uptake before reaching an equilibrium with the protonmotive force.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - MOPS morpholinopropanesulfonic acid - TPP+ tetraphenylphosphonium cation - EDTA ethylenediaminetetraacetic acid - pH transmembrane pH gradient (pHin-pHout) - transmembrane electrical potential difference  相似文献   
30.
Sertoli cells in culture produce two isoforms of proteoglycans which are found in the culture medium and associated with the cell membrane. The amount of both types of proteoglycans increased when Sertoli cells were plated on type I collagen-coated dishes as compared to uncoated dishes. The effect is due to an increase in the synthesis of proteoglycans rather than a diminished rate of degradation of these molecules. The collagen substrate also affects the distribution of these macromolecules; an increase in the amount of membrane-associated proteoglycans occurs at the expense of the proteoglycans released to the culture medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号