首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3578篇
  免费   214篇
  国内免费   200篇
  3992篇
  2023年   53篇
  2022年   75篇
  2021年   111篇
  2020年   97篇
  2019年   141篇
  2018年   156篇
  2017年   100篇
  2016年   77篇
  2015年   77篇
  2014年   234篇
  2013年   277篇
  2012年   197篇
  2011年   225篇
  2010年   150篇
  2009年   154篇
  2008年   143篇
  2007年   168篇
  2006年   152篇
  2005年   122篇
  2004年   93篇
  2003年   115篇
  2002年   70篇
  2001年   52篇
  2000年   50篇
  1999年   36篇
  1998年   30篇
  1997年   46篇
  1996年   32篇
  1995年   24篇
  1994年   22篇
  1993年   25篇
  1992年   40篇
  1991年   39篇
  1990年   27篇
  1989年   20篇
  1988年   25篇
  1987年   22篇
  1985年   45篇
  1984年   76篇
  1983年   52篇
  1982年   51篇
  1981年   44篇
  1980年   55篇
  1979年   43篇
  1978年   24篇
  1977年   26篇
  1976年   24篇
  1975年   23篇
  1974年   16篇
  1973年   17篇
排序方式: 共有3992条查询结果,搜索用时 16 毫秒
91.
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins.  相似文献   
92.
Three patients with progressive coccidioidomycosis were given preparations of transfer factor (TF). Adverse reactions to TF were minimal. Following TF administration two of these patients had prolonged clinical remissions in their coccidioidal disease. Cellular immune responses were sequentially evaluated by coccidioidininduced delayed-type skin tests, lymphocyte blast transformation and macrophage inhibition factor production (MIF). These three patients each exhibited different cellular immune patterns before and after TF administration. Two patients converted their coccidioidin skin tests, and one converted lymphocyte transformation response to coccidioidin. Also, TF apparently favorably affected the MIF response in all three patients.  相似文献   
93.
5-Methylthioribose 1-phosphate isomerase (M1Pi) is a crucial enzyme involved in the universally conserved methionine salvage pathway (MSP) where it is known to catalyze the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) via a mechanism which remains unspecified till date. Furthermore, although M1Pi has a discrete function, it surprisingly shares high structural similarity with two functionally non-related proteins such as ribose-1,5-bisphosphate isomerase (R15Pi) and the regulatory subunits of eukaryotic translation initiation factor 2B (eIF2B). To identify the distinct structural features that lead to divergent functional obligations of M1Pi as well as to understand the mechanism of enzyme catalysis, the crystal structure of M1Pi from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined. A meticulous structural investigation of the dimeric M1Pi revealed the presence of an N-terminal extension and a hydrophobic patch absent in R15Pi and the regulatory α-subunit of eIF2B. Furthermore, unlike R15Pi in which a kink formation is observed in one of the helices, the domain movement of M1Pi is distinguished by a forward shift in a loop covering the active-site pocket. All these structural attributes contribute towards a hydrophobic microenvironment in the vicinity of the active site of the enzyme making it favorable for the reaction mechanism to commence. Thus, a hydrophobic active-site microenvironment in addition to the availability of optimal amino-acid residues surrounding the catalytic residues in M1Pi led us to propose its probable reaction mechanism via a cis-phosphoenolate intermediate formation.  相似文献   
94.
潘氏闭壳龟(Cuora pani)是中国特有种,国家二级重点保护野生动物。由于非法贸易加之栖息地破坏等,其野外种群数量十分稀少。本研究旨在利用线粒体基因与核基因标记揭示潘氏闭壳龟的遗传多样性和遗传结构,以期为中国潘氏闭壳龟的种群保护和管理提供科学依据。本次共研究14只潘氏闭壳龟个体,其中,6只原产地为四川广元,8只产地未知。结果表明,在14只潘氏闭壳龟样本中鉴定出Cyt b单倍型、ND4单倍型和R35单倍型各2个,且均有1个新单倍型;Cyt b、ND4和R35基因单倍型多样性分别为0.440、0.143和0.154,核苷酸多样性分别为0.000 41、0.000 19和0.000 63;各单倍型的平均遗传距离(p)均小于0.01。基于三个基因联合数据集的系统发育分析表明,潘氏闭壳龟与金头闭壳龟(C.aurocapitata)互为单系进化支,且中性检测和核苷酸错配分析显示,潘氏闭壳龟群体近期历史上可能未经历群体扩张事件。潘氏闭壳龟群体遗传多样性低,种内变异小,群体应对环境变化的能力低,建议应加强对中国潘氏闭壳龟野外种群的基础研究和保护力度,同时规范人工繁殖,以避免近亲繁殖和种群衰退。  相似文献   
95.
Neurotoxins and alterations in Ca2+ homeostasis have been associated with Parkinson's disease (PD), but the role of store-operated Ca2+ entry channels is not well understood. Previous studies have shown the neurotoxicity of salsolinol and 1-methyl-4-phenylpyridinium ion on SH-SY5Y cells and cytoprotection induced by transient receptor potential protein 1 (TRPC1). In the present study, N-methyl-(R)-salsolinol was tested for its cellular toxicity and effects on TRPC1 expression. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-dipbenyl- tetrazolium bromide) assays, DAPI (4',6-diamidino-2-pheny- lindole), fluorescein isothiocyanate-Annexin-V/propidium iodide, western blot analysis, and JC-1 labeling revealed that the three indicated drugs could induce caspase-dependent, mitochondrial-mediated apoptosis. Exposure of SH-SY5Y cells to the indicated drugs resulted in a significant decrease in thapsigargin-mediated Ca2+ influx and TRPC1 expression. Immnnocytochemistry experiments revealed that neurotoxins treatment induced TRPC1 translocation to the cytoplasm. Taken together, our results indicate that treatment with neurotoxins may alter Ca2+ homeostasis and induce mitochondrial-mediated caspase-dependent cytotoxicity, an important characteristic of PD.  相似文献   
96.
97.
核不均一核糖核蛋白R(hnRNPR)是一种与mRNA生物学功能密切相关的RNA结合蛋白质,与多种肿瘤细胞的恶性转化相关。然而,在非小细胞肺癌(NSCLC)中的作用机制尚不清楚。本研究通过检索公共数据库发现,hnRNPR蛋白主要在肺癌细胞核中表达,hnRNPR mRNA在非小细胞肺癌组织中高表达,并且与肺腺癌患者的生存率呈负相关;hnRNPR的表达与非小细胞肺癌患者的性别、T分期显著相关(P<0.05)。构建hnRNPR基因沉默的非小细胞肺癌稳定细胞株,检测细胞功能变化,结果显示,hnRNPR基因沉默抑制了细胞增殖、迁移和侵袭能力以及上皮-间质转化(EMT),并将细胞周期阻滞在G1期(P<0.01)。生物信息学分析显示,非小细胞肺癌中hnRNPR基因与9 310个基因的表达正相关(皮尔逊相关系数>0,P<0.05),与10 680个基因的表达负相关(皮尔逊相关系数<0,P<0.05)。综上所述,hnRNPR在非小细胞肺癌中高表达,可能作为剪接体的组分,通过调节相关基因的表达,促进了NSCLC细胞的恶性转化。  相似文献   
98.
Gastric cancer cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and the resistance mechanism is not fully understood. In human gastric cancer MGC803 and BGC823 cells, TRAIL induces insulin-like growth factor-1 receptor (IGF-1R) pathway activation. Treatment with IGF-1R inhibitor OSI-906 or small interfering RNAs against IGF-1R, prevents IGF-1R pathway activation and increases TRAIL-induced apoptosis. The TRAIL-induced IGF-1R pathway activation is promoted by IGF-1R translocation into lipid rafts. Moreover, the translocation of IGF-1R into lipid rafts is regulated by Casitas B-lineage lymphoma b (Cbl-b). Taken together, TRAIL-induced IGF-1R activation antagonizes TRAIL-induced apoptosis by Cbl-b-regulated distribution of IGF-1R in lipid rafts.  相似文献   
99.
Chronic inflammation contributes to obesity mediated metabolic disturbances, including insulin resistance. Obesity is associated with altered microbial load in metabolic tissues that can contribute to metabolic inflammation. Different bacterial components such as, LPS, peptidoglycans have been shown to underpin metabolic disturbances through interaction with host innate immune receptors. Activation of Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) with specific peptidoglycan moieties promotes insulin resistance, inflammation and lipolysis in adipocytes. However, it was not clear how Nod1-mediated lipolysis and inflammation is linked. Here, we tested if Nod1-mediated lipolysis caused accumulation of lipid intermediates and promoted cell autonomous inflammation in adipocytes. We showed that Nod1-mediated lipolysis caused accumulation of diacylglycerol (DAG) and activation of PKCδ in 3T3-L1 adipocytes, which was prevented with a Nod1 inhibitor. Nod1-activated PKCδ caused downstream stimulation of IRAK1/4 and was associated with increased expression of proinflammatory cytokines such as, IL-1β, IL-18, IL-6, TNFα and MCP-1. Pharmacological inhibition or siRNA mediated knockdown of IRAK1/4 attenuated Nod1-mediated activation of NF-κB, JNK, and the expression of proinflammatory cytokines. These results reveal that Nod1-mediated lipolysis promoted accumulation of DAG, which engaged PKCδ and IRAK1/4 to augment inflammation in 3T3-L1 adipocytes.  相似文献   
100.
Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin–tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin''s reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T''s N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin–tropomyosin binding and weaker tropomyosin–actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin–thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号