首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   2篇
  国内免费   3篇
  157篇
  2023年   1篇
  2019年   1篇
  2016年   3篇
  2014年   4篇
  2013年   1篇
  2012年   8篇
  2011年   9篇
  2010年   3篇
  2009年   9篇
  2008年   10篇
  2007年   6篇
  2006年   7篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   9篇
  1992年   4篇
  1991年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
61.
Synchronized regulation of cell division during gastrulation is essential for the regional proliferation of cells and pattern formation of the early CNS. The neural plate and neuroectoderm cells are a rapidly dividing and differentiating population of cells with a unique and rapid heat-shock response. Heat shock and the heat-shock genes were studied during neural plate development in a whole rat embryo culture system at 9.5-11.5 days. A lethal heat shock can cause cell death and severe developmental defects to the forebrain and eye during organogenesis. Heat shock can also result in acquired thermotolerance whereby cell progression is delayed at the G1/S and S/G2 boundaries of the cell cycle. This delay in cell cycle progression caused an overall lengthening of the cell cycle time of at least 2 hr. The heat shock genes may therefore function as cell cycle regulators in neuroectoderm induction and differentiation. The kinetics and expression of the hsp genes were examined in neuroectodermal cells by flow cytometry and Northern analysis. The levels of hsp mRNA 27, 71, 73, and 88 were identified following exposure at 42°C (nonlethal), 43deg;C (lethal) and 42deg;/43deg;C (thermotolerant) heat shock. Examination of hsp gene expression in the neural plate showed tight regulation in the cell cycle phases. Hsp 88 expression was enhanced at Go and hsp71 induction at G2 + M of the cell cycle. Cells exposed to a thermotolerant heat shock of 42deg;C induced hsp71 mRNA expression in all phases of the cell cycle with the mRNA levels of hsp27, 73, and 88 increased but relatively constant. Following a lethal heat shock, dramatic changes in hsp expression were seen especially enhanced hsp71 induction in late S phase. The regulated expression of hsps during the cell cycle at various phases could play a unique and important role in the fate and recovery of neuroectoderm cells during early mammalian embryo development. © 1993Wiley-Liss, Inc.  相似文献   
62.
When pharate adults of the flesh fly Sarcophaga crassipalpis are exposed to 40°C for 4 h they become more tolerant of high temperatures that are normally lethal (thermotolerance). In contrast, a 1-h exposure to 45°C decreases tolerance to a subsequent high temperature challenge (thermosensitivity). While control flies experience little mortality when held at 35°C for 24–48 h the thermosensitized flies die when exposed to 35°C. Sensitivity to a second thermal challenge slowly decays over a 72-h period. The acquisition of thermotolerance prevents the development of thermosensitivity. Brains from thermosensitized flies cultured at 43°C express the 72-kDa heat-shock protein and normal protein synthesis is inhibited. This implies that development of thermosensitivity is not associated with a loss in the capacity to express the 72-kDa heat-shock protein.Abbreviations ICN ICN Biomedicals, Inc. PO Box 19536, Irvine, CA 92713-9921 - LD light dark cycle - LT50 time required to kill 50% of the test animals - SDS sodium dodecyl sulfate - TRIS Tris(hydroxymethyl)aminomethane  相似文献   
63.
Heat-shock proteins (HSPs) are synthesized by animals and plants in response to various stressors. The level of the HSP60 stress protein was measured from the cell fraction of peripheral blood obtained from nestling house martins (Delichon urbica) to test whether ectoparasitism increased the concentration of stress protein. We assessed HSP from nestlings raised in nests previously treated with an insecticide or infested with 50 martin bugs (Oeciacus hirundinis). In addition, haematozoa infections were checked in blood smears. Nestlings from parasite-infested nests, or nestlings infected with trypanosomes, had increased levels of HSP in their blood cells. Nestling growth as determined from wing length was negatively related to HSP60 levels and within-brood variation in wing length increased with increasing levels of the stress protein independently of treatment and infection by trypanosomes. These results suggest HSPs may play a role in host-parasite interactions, and that they can be used reliably for measuring physiological responses to parasites. Received: 4 February 1998 / Accepted: 4 May 1998  相似文献   
64.
Abstract: Systematic review of antemortem clinical information on randomly selected Alzheimer disease (AD) patients revealed that ∼40% of the patients had a recorded fever of ≥39.2°C at or near death. Using isolation and quantitation techniques appropriate for analysis of human brain mRNAs, we found that low levels of inducible heat-shock protein 70 (hsp70) mRNAs were present in cerebellum of afebrile AD patients and that mRNA levels were usually lower in two brain regions affected in AD, i.e., hippocampus and temporal cortex. Levels of hsp70 mRNAs were increased three- to 33-fold in cerebellum of febrile patients compared with levels in patients whose recorded temperatures were ≤37.5°C. Levels of hsp70 mRNAs were also increased in hippocampus and cortex of these febrile patients, but to a lesser extent than cerebellum. Heat-shock cognate 70 (hsc70) mRNAs were present at highest levels in afebrile cerebellum and were also present in the other brain regions. In cerebellum of patients with the highest temperatures, hsc70 mRNAs were induced severalfold over basal levels. Although there was a low and variable induction of hsc70 mRNAs in temporal cortex of these patients, there was no evidence for any induction in hippocampus. Increased heat-shock 70 mRNA levels did not correlate with hypoxia, coma, hypertension, hypoglycemia, seizures, or medication. These results indicate that a specific agonal stress, namely fever, can increase the levels of heat shock 70 mRNAs in AD brain; however, there is no evidence to suggest that affected regions of AD brain have higher overall levels of these mRNAs. Failure to obtain adequate agonal state information could result in inaccurately identifying short-term stress-related changes in postmortem brain as neuropathology characteristic of a chronic disease state.  相似文献   
65.
Genetic variation for resistance to a high temperature stress under saturated humidity was examined within and among three Drosophila buzzatii populations from Australia. Further, the acclimation of this species to high temperatures was tested by prelreating flies for a shorter, sublethal, time period under conditions that lead to expression of heat shock proteins. Genetic variation for temperature resistance was present among lines for flies either pretreated to high temperature or not. Pro-treating increased survival, with the benefit significantly higher if pretreating was performed 24 h rather than 96 h before exposure to the potentially lethal stress. For (lies pretreated at both times, resistance to heat stress was even greater. The lack of a significant treatment by line interaction term suggested that all lines were similarly plastic for acclimation following previous exposure(s) to a high temperature. Significantly more males survived the heat stress than females, and, within each sex, larger flies were generally more heat resistant than smaller ones. Additionally, the lines from the population that naturally encounters the highest temperatures were generally more resistant to high temperature stress.  相似文献   
66.
Summary Antibodies were raised against a synthetic tetradecameric peptide with an amino acid sequence, DLIQEGNIGLMKAV, which corresponds to the most highly conserved region of bacterial RNA polymerase factors. In a Western-blot analysis of total Escherichia coli proteins, the antiserum reacted specifically with at least three proteins with apparent molecular weights of 75 kDa, 27 kDa and 23 kDa, in addition to the known factors (70 and 32). The majorities of 70 and 32 were recovered as associated forms with the RNA polymerase on glycerol gradient centrifugation, while the other cross-reacting proteins were not. Unambiguous evidence was obtained which indicated that the intracellular level of 32 increased rapidly upon heatshock, at least in the strain containing high copy numbers of the rpoH gene.  相似文献   
67.
The relationship between the 68-kilodalton microtubule-associated protein (68KMAP) and the major heat-induced protein (HSP70) in rat and human cells was investigated by comparison of their heat induction properties and by tryptic and Cleveland peptide mapping procedures. HSP70 synthesis was induced by heat shock of rat and human cells, whereas 68KMAP was a major synthesised protein in the absence of heat shock, with its synthesis being only slightly increased on heat shock. Tryptic peptide mapping, however, indicated strong peptide homology between the two proteins. These data, therefore, confirm that 68KMAP represents a constitutively expressed, heat-shock cognate gene. Two-dimensional gel electrophoretic analysis of subcellular fractions of rat brain, combined with peptide mapping procedures, indicated that 68KMAP exists as at least two isoforms separable by isofocussing, the more acidic of which (alpha 68KMAP) is present in fractions enriched in microtubules, cytosol, microsomes, synaptosomal plasma membranes, and synaptic vesicles, and the more basic of which (beta 68KMAP) is present predominantly in fractions enriched in synaptic vesicles and synaptosomal plasma membranes. These two forms are distinguishable in terms of changes in Cleveland peptide maps, and we conclude that alpha- and beta 68KMAP, therefore, represent distinct forms. The significance of these findings to the molecular pathogenesis of Down's syndrome in the human brain is discussed.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号