首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2572篇
  免费   83篇
  国内免费   51篇
  2024年   3篇
  2023年   16篇
  2022年   27篇
  2021年   60篇
  2020年   95篇
  2019年   28篇
  2018年   28篇
  2017年   51篇
  2016年   55篇
  2015年   95篇
  2014年   139篇
  2013年   150篇
  2012年   97篇
  2011年   163篇
  2010年   134篇
  2009年   124篇
  2008年   151篇
  2007年   127篇
  2006年   117篇
  2005年   110篇
  2004年   116篇
  2003年   69篇
  2002年   49篇
  2001年   39篇
  2000年   44篇
  1999年   53篇
  1998年   66篇
  1997年   41篇
  1996年   44篇
  1995年   45篇
  1994年   38篇
  1993年   51篇
  1992年   35篇
  1991年   41篇
  1990年   41篇
  1989年   22篇
  1988年   17篇
  1987年   19篇
  1986年   21篇
  1985年   8篇
  1984年   17篇
  1983年   6篇
  1982年   12篇
  1981年   10篇
  1980年   4篇
  1979年   7篇
  1978年   7篇
  1977年   5篇
  1976年   4篇
  1972年   2篇
排序方式: 共有2706条查询结果,搜索用时 15 毫秒
91.
Although season has been shown to affect bull sperm quality and fertility in some studies, the effect of season on seminal plasma proteins has not been examined. In the present study, seminal plasma proteins were analysed by Fast Protein Liquid Chromatography (FPLC), to separate the phosphorylcholine-binding proteins and heparin-binding proteins from the other proteins. Semen samples were collected from bulls in three seasons: winter, summer and the rainy season. Sperm quality was analysed by flow cytometry and computer assisted sperm analysis, and further aliquots of semen were used to prepare the seminal plasma for FPLC. Meteorological data were available from a location close to the bull station. There were slight differences in sperm kinematics between seasons, but other parameters of sperm quality were not different. Minor differences in the phosphorylcholine-binding proteins were detected according to season, being lower in summer than in winter or in the rainy season, although there were no changes in the heparin-binding proteins. Temperature, humidity and rainfall differed between winter and the rainy season, but no differences were observed between summer and the rainy season except in the temperature humidity index (THI). However, the THI was above the threshold indicative of heat stress in all seasons, which could explain why few seasonal differences in protein composition were detected in this study. Alternatively, the bulls could have been well-adapted to heat stress. In conclusion, there were only slight differences in bull sperm quality and seminal plasma proteins between seasons during this study.  相似文献   
92.
Heat stress is a major limiting factor for animal welfare and sheep production. Traditionally in India, the villagers used to keep their drinking water in the earthen pot to make it cold during summer. The cold drinking water (24–28 °C) during summer gives a feeling of relief from the heat. Therefore, the present study was carried out to assess the effect of drinking earthen pot water on physiological response and behavior of sheep under heat stress for one month. For this purpose, eighteen Avishaan rams were selected from the experimental animal flock and they were equally divided into three groups; viz., control (CON), heat stress (HS) and heat stress with earthen pot water (HSC). The animals of HS and HSC were exposed to higher ambient temperatures to induce heat stress inside the psychometric chamber. The animals of CON and HS were provided with ad-libitum water of their ambient temperature whereas; HSC groups were provided with ad-libitum cold water (24–28 °C) earthen pot water. All the animals were offered with 400 gm concentrate mixture and ad-libitum Cenchrus hay. The bodyweight of HS rams was significantly reduced (P < 0.05) at the end of the experimental period as compared to their initial body weight. The total roughage and dry matter intake was significantly higher (P < 0.01) in HSC rams as compared to HS rams. The plasma thyroxine concentration was significantly lower (P < 0.05) in HSC as compared with HS group. The rumination time significantly reduced (P < 0.05) in HSC group. However, The blood biochemical did not differ among the groups. Therefore, it may be concluded that Avishaan rams have the ability to adapt to heat stress. Nevertheless, the availability of earthen pot cold drinking water under heat stress reduced their body weight loss, improves their metabolic activity and ultimately improves their welfare.  相似文献   
93.
We investigated whether the magnitude of exercise-induced hyperthermia influences intestinal permeability and tight junction gene expression. Twenty-nine male Wistar rats were divided into four groups: rest at 24 °C and exercise at 13 °C, 24 °C or 31 °C. The exercise consisted of a 90-min treadmill run at 15 m/min, and different ambient temperatures were used to produce distinct levels of exercise-induced hyperthermia. Before the experimental trials, the rats were treated by gavage with diethylenetriaminepentaacetic acid labeled with technetium-99 metastable as a radioactive probe. The rats' core body temperature (TCORE) was measured by telemetry. Immediately after the trials, the rats were euthanized, and the intestinal permeability was assessed by measuring the radioactivity of blood samples. The mRNA levels of occludin and zonula occludens-1 (ZO-1) genes were determined in duodenum samples. Exercise at 24 °C increased TCORE to values close to 39 °C, without changing permeability compared with the resting trial at the same environment. Meanwhile, rats’ TCORE exceeded 40 °C during exercise at 31 °C, leading to greater permeability relative to those observed after exercise in the other ambient temperatures (e.g., 0.0037%/g at 31 °C vs. 0.0005%/g at 13 °C; data expressed as medians; p < 0.05). Likewise, the rats exercised at 31 °C exhibited higher mRNA levels of ZO-1 and occludin genes than the rats exercised at 24 °C or 13 °C. The changes in permeability and gene expression were positively and significantly associated with the magnitude of hyperthermia. We conclude that marked hyperthermia caused by exercise in the warmer environment increases intestinal permeability and mRNA levels of tight junction genes.  相似文献   
94.
The purpose of this study was to determine local sweat rate (LSR) and sweat composition during heat acclimation (HA). For ten consecutive days of HA, eight participants cycled in 33 °C and 65% relative humidity at an intensity such that a rectal temperature of 38.5 °C was reached within ~40 min, followed by a 60-min clamp of this rectal temperature (i.e., controlled hyperthermia). Four participants extended HA by a 28-day decay period and five consecutive days of heat re-acclimation (HRA) using controlled hyperthermia. Sweat from the upper arm and upper back was collected three times during each heat exposure session. LSR and sweat sodium, chloride, lactate, and potassium concentrations were determined. Relative to HA day 1, LSR was increased at the final day of HA (day 10) (arm: +58%, P < 0.001; back: +36%, P < 0.05). Concentrations of sodium, chloride, and lactate significantly (P < 0.05) decreased to ~60% at HA day 10 compared to day 1 on the arm and back. Potassium concentration did not significantly differ on HA day 10 compared to day 1 (arm: +11%, P > 0.05; back: +8%, P > 0.05). The induction patterns of the sudomotor adaptations were different. Whilst LSR increased from HA day 8 on the arm and from HA day 7 on the back, sodium and chloride conservation already occurred from HA day 3 on both skin sites. Lastly, the sweat lactate reduction occurred from HA day 6 on the arm and back. Initial evidence is provided that adaptations were partly conserved after decay (28 days) and that a 5-day HRA may be sufficient to restore HA adaptations. In conclusion, ten days of exercise-induced HA using controlled hyperthermia led to increases in LSR and concomitant reductions of sweat sodium, chloride, and lactate concentrations, whilst potassium concentrations remained relatively constant.  相似文献   
95.
96.
As a major class of pattern-recognition receptors, Toll-like receptors (TLRs) play a critical role in defense against invading pathogens. Increasing evidence demonstrates that, in addition to infection, TLRs are involved in other important pathological processes, such as tumorigenesis. Activation of TLRs results in opposing outcomes, pro-tumorigenic effects and anti-tumor functions. TLR signaling can inhibit apoptosis and promote chronic inflammation-induced tumorigenesis. TLR activation in tumor cells and immune cells can induce production of cytokines, increase tumor cell proliferation and apoptosis resistance, promote invasion and metastasis, and inhibit immune cell activity resulting in tumor immune escape. In contrast, the engagement of other TLRs directly induces growth inhibition and apoptosis of tumor cells and triggers activation of immune cells enhancing anti-tumor immune responses. Thus, the interpretation of the precise function of each TLR in tumors is very important for targeting TLRs and using TLR agonists in tumor therapy. We review the role of TLR signaling in tumors and discuss the factors that affect outcomes of TLR activation.  相似文献   
97.
Across populations of Drosophila melanogaster along the Australian eastern coastline latitudinal clines occur in both heat-knockdown tolerance and hardened heat-knockdown tolerance – low latitude tropical populations being more tolerant. A latitudinal cline also occurs for rates of total protein synthesis following a mild heat stress, with tropical populations having higher rates. Since the control of protein synthesis following heat stress is an important component of the cellular heat-shock response, we hypothesised that the higher rates of synthesis that follow a heat stimulus lead to higher knockdown tolerance and underpins the cline. However, levels of heat-stimulated total protein synthesis have been negatively related to heat-hardening capacity, a somewhat conflicting result. Here we examine the relationship between these physiological and adaptive traits in a set of 40 family lines derived from a hybrid laboratory population established by crossing populations from either end of the latitudinal transect. Among these lines high levels of heat-stimulated total protein synthesis were associated with both low basal and low heat-hardened adult knockdown time, confirming the importance of a negative relationship between protein synthesis and thermal tolerance. This result, when considered along with the directions of the latitudinal clines in protein synthesis and tolerance, suggests that variation in rates of heat-stimulated total protein synthesis is not a factor contributing to the latitudinal cline in heat tolerance. Given the robustness of this negative relationship we discuss possible explanations and future experiments to elucidate how the cellular heat stress response might facilitate increased knockdown tolerance.  相似文献   
98.
It has been reported that hypothermia induced by arginine vasopressin (AVP) is brought about by a coordinated response of reduced thermogenesis in brown adipose tissue (BAT) and increased heat loss through the tail of rats. However, it is well known that AVP is one of the strongest peripheral vasoconstrictors. Whether the AVP-induced hypothermia is associated with an increase in heat loss through the tail is questionable. Therefore, the present study assessed the relationship between the effects of AVP on tail skin temperature and the induced hypothermic response, and to determine if peripheral AVP administration increases heat loss from the tail. Core, BAT and tail skin temperature were monitored by telemetry in male Sprague–Dawley rats before and after intraperitoneal administration of AVP or vasopressin receptor antagonist. We also analyzed simultaneously of the time-course of AVP-induced hypothermic response and its relationship with changes in BAT temperature, and effect of AVP on grooming behavior. The key observations in this study were: (1) rats dosed with AVP induced a decrease in heat production (i.e., a reduction of BAT thermogenesis) and an increase of saliva spreading for evaporative heat loss (i.e., grooming behavior); (2) AVP caused a marked decrease in tail skin temperature and this effect was prevented by the peripheral administration of the vasopressin V1a receptor antagonist, suggesting that exogenous AVP does not increase heat loss in the tail of rats; (3) the vasopressin V1a receptor antagonist could elevate core temperature without affecting tail skin temperature, suggesting that endogenous AVP is involved in suppression of thermogenesis, but not mediates heat loss in the tail of rats. Overall, the present study does not support the conclusion of previous reports that AVP increased tail heat loss in rats, because AVP-induced hypothermia in the rat is accompanied by a decrease in tail skin temperature. The data indicate that exogenous AVP-induced hypothermia attributed to the suppression of thermoregulatory heat production and the increase of saliva spreading for evaporative heat loss.  相似文献   
99.
It is hypothesized that the elevation of the temperature of the blood during heat stress may cause an increase of the shedding of erythrocyte membrane vesicles. Therefore, the increase of vesicle numbers following heat stress may be indicative of and proportional to the level heat stress. In order to test this hypothesis, erythrocytes and the vesicles shed by erythrocytes were collected from rat blood and analyzed after the elevation of body temperature by exposure to external heat. The images of erythrocytes and vesicles were analyzed by a custom light microscopy system with spatial resolution of better than 90 nm. The samples were observed in an aqueous environment and required no freezing, dehydration, staining, shadowing, marking or any other manipulation. The elevation of temperature from 36.7±0.3 to 40.3±0.4 °C resulted in significant increase of the concentration of vesicles in blood. At a temperature of 37 °C, mean vesicle concentrations and diameters found in rat blood were (1.4±0.2)×106 vesicles/μL and 0.436±0.03 μm, respectively. The concentration of free vesicles increased after exposure to heat to (3.8±0.3)×106 vesicles/μL. It was estimated that 80% of all vesicles found in rat blood are smaller than 0.45 μm. The increase in the number of vesicle associated with elevated temperatures may be indicative of the heat stress level and serve as diagnostic test of erythrocyte stability and heat resistance.  相似文献   
100.
Physical work, high ambient temperature and wearing protective clothing can elevate body temperature and cardiovascular strain sufficiently to degrade performance and induce heat-related illnesses. We have recently developed an Arm Immersion Cooling System (AICS) for use in military training environments and this paper will review literature supporting such an approach and provide details regarding its construction. Extremity cooling in cool or cold water can accelerate body (core temperature) cooling from 0.2 to 1.0 °C/10 min vs. control conditions, depending on the size/surface area of the extremity immersed. Arm immersion up to the elbow results in greater heat loss than hand- or foot-only immersion and may reduce cardiovascular strain by lowering heart rate by 10–25 beats/min and increase work tolerance time by up to 60%. The findings from studies in this paper support the use of AICS prototypes, which have been incorporated as part of the heat stress mitigation procedures employed in US Army Ranger Training and may have great application for sports and occupational use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号