首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3208篇
  免费   374篇
  国内免费   18篇
  2024年   9篇
  2023年   86篇
  2022年   85篇
  2021年   143篇
  2020年   112篇
  2019年   124篇
  2018年   104篇
  2017年   108篇
  2016年   119篇
  2015年   133篇
  2014年   219篇
  2013年   309篇
  2012年   148篇
  2011年   191篇
  2010年   120篇
  2009年   134篇
  2008年   151篇
  2007年   162篇
  2006年   142篇
  2005年   103篇
  2004年   127篇
  2003年   98篇
  2002年   73篇
  2001年   38篇
  2000年   41篇
  1999年   65篇
  1998年   34篇
  1997年   32篇
  1996年   27篇
  1995年   32篇
  1994年   26篇
  1993年   40篇
  1992年   36篇
  1991年   28篇
  1990年   26篇
  1989年   8篇
  1988年   9篇
  1987年   11篇
  1986年   14篇
  1985年   13篇
  1984年   22篇
  1983年   16篇
  1982年   14篇
  1981年   5篇
  1980年   12篇
  1979年   10篇
  1977年   9篇
  1976年   7篇
  1974年   6篇
  1973年   5篇
排序方式: 共有3600条查询结果,搜索用时 31 毫秒
991.
Naked plasmid DNA (pDNA) and short interfering RNA (siRNA) duplexes were transduced into adult murine heart by means of sonoporation using the third-generation microbubble, BR14. Plasmid DNAs carrying luciferase, beta-galactosidase (beta-gal), or enhanced green fluorescent protein (EGFP) reporter genes were mixed with BR14 and injected percutaneously into the left ventricular (LV) cavity of C57BL/6 mice while exposed to transthoracic ultrasound at 1MHz for 60s. Sonoporation at an output intensity of 2.0W/cm(2) and a 50% pulse duty ratio resulted in the highest luciferase expression in the heart. Histological examinations revealed significant expression of the beta-gal and EGFP reporters in the subendocardial myocardium of LV. Intraventricular co-injection of siRNA-GFP and BR14 with concomitant ultrasonic exposure resulted in substantial reduction in EGFP expression in the coronary artery in EGFP transgenic mice. The present method may be applicable to gain-of-function and loss-of-function genetic engineering in vivo of adult murine heart.  相似文献   
992.
993.
Activation of the delta-isoform of protein kinase C (deltaPKC) by certain conditions of oxidative stress results in translocation of the kinase to the mitochondria leading to release of cytochrome c and the induction of apoptosis. In the current study, the effects of myocardial reperfusion-induced deltaPKC translocation on mitochondrial function were assessed. Mitochondria isolated from hearts that had undergone ischemia (30 min) followed by reperfusion (15 min) exhibited a significant increase in the rate of superoxide anion (O(2)(-)) generation. This was associated with the translocation of deltaPKC to the mitochondria within the first 5 min of reperfusion. deltaPKC translocation occurred exclusively during reperfusion and could be mimicked by infusion of intact hearts with H(2)O(2) suggesting redox-dependent activation during reperfusion. Infusion of a peptide inhibitor (deltaV(1-1)) specific to the delta-isoform of PKC significantly reduced reperfusion-induced increases in mitochondrial O(2)(-) generation. Finally, the decline in mitochondrial respiratory activity evident upon prolonged reperfusion (120min) was completely prevented by inhibition of deltaPKC translocation. Thus, deltaPKC represents a cytosolic redox-sensitive molecule that plays an important role in amplification of O(2)(-) production and subsequent declines in mitochondrial function during reperfusion.  相似文献   
994.
Chronic hypertension results in cardiac hypertrophy and may lead to congestive heart failure. The protein kinase C (PKC) family has been identified as a signaling component promoting cardiac hypertrophy. We hypothesized that PKC activation may play a role mediating hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat heart. Six-month-old SHHF and normotensive control Wistar Furth (WF) rats were used. Hypertension and cardiac hypertrophy were confirmed in SHHF rats. PKC expression and activation were analyzed by Western blots using isozyme-specific antibodies. Compared to WF, untreated SHHF rats had increased phospho-active (10-fold), (4-fold), and (3-fold) isozyme expression. Furthermore, we analyzed the effect of an angiotensin II type 1 receptor blocker (ARB) and hydralazine (Hy) on PKC regulation in SHHF rat left ventricle (LV). Both the ARB and Hy normalized LV blood pressure, but only the ARB reduced heart mass. Neither treatment affected PKC expression or activity. Our data show differential activation of PKC in the hypertensive, hypertrophic SHHF rat heart. Regression of hypertrophy elicited by an ARB in this model occurred independently of changes in the expression and activity of the PKC isoforms examined. (Mol Cell Biochem 270: 63–69, 2005)  相似文献   
995.
Comparisons of electrocardiogram (ECG) and heart rate characteristics of three representative species in response to temperature acclimation were studied. In toad (Bufo raddei), T wave had positive, negative and flat patterns, which was different from positive in lizard (Eremias multiocellata), blunt and broad in bird (Alectories magna). The duration of P-R interval, Q-T interval and QRS complex interval reduced with increasing temperature in toad, but the P-R and T-P intervals were affected mostly, the QRS and R-T intervals were relatively less affected in lizard. In the bird, the voltage of P, S and T wave scarcely changed, R wave increased slightly with temperature going up in the thermal neutral zone (20-35 degrees C), T and S waves tended to increase and P-S and S-T intervals shortened when temperature went below the neutral zone. Heart rate was high and relatively steady in bird, but changed linearly in relation to temperature in toad and lizard. The increasing of heart rate with temperature was mainly caused by the T-P interval shortened in lizard, but P-S and S-T intervals shortened in bird. Comparisons of ECG and heart rate characteristics of three representative species in response to temperature acclimation reflected phylogenetically based constraints on pacemaker rates, oxygen supply and modulatory mechanisms.  相似文献   
996.
997.
Defects in heart development are the most common congenital abnormalities in humans, providing a strong incentive to learn more about the underlying causes. Previous studies have implicated the metalloprotease-disintegrins ADAMs (a disintegrin and metalloprotease) 17 and 19 as well as heparin binding EGF-like growth factor (HB-EGF) and neuregulins in heart development in mice. Here, we show that mice lacking both ADAMs 17 and 19 have exacerbated defects in heart development compared to mice lacking either ADAM, providing the first evidence for redundant or compensatory functions of ADAMs in development. Moreover, we identified additional compensatory or redundant roles of ADAMs 9 and 19 in morphogenesis of the mitral valve and cardiac outflow tract. Cell biological studies designed to address the functions of these ADAMs in shedding of HB-EGF uncovered a contribution of ADAM19 to this process, but this was only evident in the absence of the major HB-EGF sheddase, ADAM17. In addition, ADAM17 emerged as the major sheddase for neuregulins beta1 and beta2 in mouse embryonic fibroblasts. These results raise the possibility that ADAMs 9, 17, and 19 contribute to heart development in humans and have implications for understanding the mechanisms underlying congenital heart disease.  相似文献   
998.
Stearoyl-CoA desaturase 1 (SCD1) deficiency partitions fatty acids away from lipid synthesis towards fatty acid oxidation in liver and skeletal muscle in part due to activation of AMP-activated protein kinase (AMPK) pathway. The mechanism of AMPK activation by SCD1 mutation is unknown, however since SCD1-/- animals have increased relative amounts of polyunsaturated fatty acids (PUFA), we hypothesized that the increased levels of PUFA might be responsible for the activation of AMPK in SCD1 deficient mice. Therefore, the present study was undertaken to analyze the effect of PUFA on AMPK in liver, skeletal muscle, and heart. We fed mice ad libitum for 14 days with diet supplemented with fish oil (5% fat). As expected, fish oil supplementation significantly increased n-3 PUFA content in each of the analyzed tissues. Hepatic mRNA levels of fatty acid synthase and acyl-CoA oxidase decreased by 92% and increased by 60%, respectively, consistent with known PUFA effects. However, after 14 days of PUFA feeding, we did not find any changes in AMPK phosphorylation and protein content in mouse liver, skeletal muscle, and heart. The data suggest that PUFA are not involved in AMPK activation in mouse tissues and that the increased activity of AMPK in SCD1-/- mice is probably PUFA-independent.  相似文献   
999.
1000.
Tbx20-related T-box genes have been implicated in the regulation of heart development in several vertebrate species. In the present report, we demonstrate that a pair of genes representing Drosophila orthologs of Tbx20, midline (mid) and H15, have important functions during the development of the Drosophila equivalent of the heart, i.e. the dorsal vessel. We show that mid is among the earliest known genes that are specifically expressed in all cardioblasts during early embryogenesis, and H15 expression is subsequently activated in the same cells. Mutant embryos lacking the activity of mid, or both mid and H15, are able to form dorsal vessels with largely normal numbers of cardioblasts and pericardial cells. Furthermore, the mutant cardioblasts express several general cardioblast markers such as Mef2 and Toll at normal levels. However, the expression of tinman (tin), which normally occurs in four out of six cardioblasts in each hemisegment of the dorsal vessel, is almost abolished. Conversely, the expression of the Dorsocross (Doc) T-box genes, which is normally restricted to the two Tin-negative cardioblasts in each hemisegment, is strongly expanded into the majority of cardioblasts in mid mutant and mid+H15-deficient embryos. Altogether, the data from the loss-of-function phenotypes demonstrate that mid, and to a lesser degree H15, have important roles in establishing the metameric patterning of cardioblast identities, but not in specifying cardioblasts as such. Ectopic expression of mid causes ectopic tin expression and, less efficiently, produces extra cardioblasts. We propose that one of the major functions of mid and H15 during cardioblast development is the re-activation of tin expression at a stage when the induction of tin by Dpp in the dorsal mesoderm has ceased. Through this activity, mid and H15 are required for the normal functional diversification of cardioblasts and the expression of tin-dependent terminal differentiation genes within the dorsal vessel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号