首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   17篇
  国内免费   63篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   4篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   13篇
  2016年   10篇
  2015年   10篇
  2014年   11篇
  2013年   19篇
  2012年   6篇
  2011年   12篇
  2010年   5篇
  2009年   10篇
  2008年   4篇
  2007年   19篇
  2006年   24篇
  2005年   20篇
  2004年   12篇
  2003年   18篇
  2002年   7篇
  2001年   11篇
  2000年   13篇
  1999年   9篇
  1998年   15篇
  1997年   7篇
  1996年   14篇
  1995年   16篇
  1994年   8篇
  1993年   20篇
  1992年   10篇
  1991年   6篇
  1990年   14篇
  1989年   11篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
排序方式: 共有426条查询结果,搜索用时 781 毫秒
361.
362.
In regions dominated by agricultural activities, nitrogen (N) is recognized as a major pollutant in aquatic environments. In north‐western Europe, afforestation of agricultural land is part of a strategy to improve water quality. In Denmark, former arable land has been afforested during the past 40–50 years. This study evaluated the effect of afforestation of former arable land on nitrate leaching, based on three afforestation chronosequences. Precipitation, canopy throughfall and soil water were collected and soil moisture was monitored at two Danish locations, Vestskoven (nutrient‐rich, medium deposition) and Gejlvang (nutrient‐poor, high deposition). Afforestation was performed using Norway spruce [Picea abies (Karst.) L.] and common oak (Quercus robur L.) at Vestskoven and Norway spruce at Gejlvang. The results suggest that afforestation of former arable land initially leads to lower nitrate leaching than that occurring under the former agricultural land use, and largely below the standard of 50 mg NO3 L−1 for groundwater to be utilized as drinking water. Nitrate concentrations became almost negligible in forest stands of 5–20 years of age. However, after canopy closure (>20 years) nitrate concentrations below the root zone and nitrate leaching tended to increase. This was attributed to increased N deposition with increasing canopy development and decreased N demand once the most N‐rich biomass compartments had been built up. Nitrate leaching started to increase at a throughfall deposition level of about 10 kg N ha−1 yr−1. Compared with nutrient‐poor sandy soils, nutrient‐rich clayey soils appeared more vulnerable to disturbance of the N cycle and to increased N deposition, leading to N saturation and enhanced nitrate leaching. In approximately the first 35 years after afforestation, nitrate leaching below the root zone was generally higher below oak than below Norway spruce.  相似文献   
363.
X-ray diffraction analysis revealed that pentlandite and chalcopyrite were the prominent mineral phases in a South African sulfidic nickel ore concentrate that hosted nickel and copper. Cobalt was found to be closely associated with the nickel-bearing pentlandite phase of the ore sample. Microbial batch leaching experiments designed according to a central composite design model were run for 15 days in a shaking incubator (150 rpm) at a constant temperature (30°C) with variations in experimental parameters like ore pulp density, particle size, bacterial inoculum, pH of the culture medium, and residence time. Quadratic mathematical models were developed to predict the rate of metal extractions. The suitability of the model of the microbial leaching process was confirmed from normal probability curves. An analysis of variance indicated that the residence time, pulp density of the ore, and particle size were the most significant factors. Bacterial inoculum size hardly showed any effect on the total metal extractions. Maximum nickel (82%), cobalt (76%) and copper (25.6%) extractions were achieved under optimum conditions, operated for 15 days at pulp density of 2% and particle size of ?75 µm at pH 1.5.  相似文献   
364.
Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced‐efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release with crop uptake, offering the potential for enhanced N use efficiency (NUE) and reduced losses. Can EEFs play a significant role in helping address the N management challenge? Here we present a comprehensive analysis of worldwide studies published in 1980–2016 evaluating four major types of EEFs (polymer‐coated fertilizers PCF, nitrification inhibitors NI, urease inhibitors UI, and double inhibitors DI, i.e. urease and nitrification inhibitors combined) regarding their effectiveness in increasing yield and NUE and reducing N losses. Overall productivity and environmental efficacy depended on the combination of EEF type and cropping systems, further affected by biophysical conditions. Best scenarios include: (i) DI used in grassland (= 133), averaging 11% yield increase, 33% NUE improvement, and 47% decrease in aggregated N loss (sum of NO3, NH3, and N2O, totaling 84 kg N/ha); (ii) UI in rice‐paddy systems (= 100), with 9% yield increase, 29% NUE improvement, and 41% N‐loss reduction (16 kg N/ha). EEF efficacies in wheat and maize systems were more complicated and generally less effective. In‐depth analysis indicated that the potential benefits of EEFs might be best achieved when a need is created, for example, by downward adjusting N application from conventional rate. We conclude that EEFs can play a significant role in sustainable agricultural production but their prudent use requires firstly eliminating any fertilizer mismanagement plus the implementation of knowledge‐based N management practices.  相似文献   
365.
Abstract

The purpose of the work was to characterize changes in surface textures of minerals during the biological leaching of a complex sulfide ore. The ore contained pyrrhotite (FeI_xS), pyrite (FeS2), sphalerite (ZnS), pentlandite [(Ni,Fe,Co)9S8], and chalcopyrite (CuFeS2). Several mixed cultures were initially screened using the ore material as the sole substrate. Shake flask leaching experiments showed no major differences among test cultures, which were all derived by enrichment techniques using environmental samples collected from a mine site. Leached pyrrhotite surfaces were invariably surrounded by a dark rim of elemental S. A reaction zone was also associated with leached sphalerite grains. Chemical analyses of leach solutions indicated that the relative ranking of biological leaching of the sulfide minerals was Zn > Ni > Co > Cu. Microscopic observations were in keeping with this rankin  相似文献   
366.
Abstract

This study examines the influence of a low‐persistent chelator, [S,S]‐EDDS (ethylene diamine disuccinic acid), on the growth of Ethiopian mustard (Brassica carinata A. Braun) and fodder radish (Raphanus sativus L. var. oleiformis) and on metal leaching (ML) in As–Co–Cu–Pb–Zn‐contaminated pyrite wastes. Plants were grown in pots for 75 days with test doses of 2.5 and 5 mmol EDDS per kg of soil applied through irrigation one week before harvest, and 1 mmol EDDS per kg of soil repeated five times at 5‐ and 10‐day intervals, in comparison with untreated controls. Fodder radish treated with 1 mmol at the five‐day interval was also irrigated with 1 mg IBA (indole‐3‐butyric acid) per kg of soil every 10 days. Shoot biomass, leaf area and root growth were generally reduced by EDDS in both species, particularly in repeated applications and in radish, regardless of IBA supply, with root biomass being more affected than length and electrical capacitance (EC). EDDS generally improved shoot concentrations of Cu, Co, Zn and Pb, but repeated treatments caused significant ML (mainly of Cu), explained by a multivariate relationship (R 2 = 0.52) including the integral over time of both leaf area (R 2 = 0.43) and root EC (R 2 = 0.09). We conclude that roots play a secondary role in preventing ML, because of the prevailing effect of leaf transpiration in controlling percolation. The best metal phytoextraction was achieved with EDDS applied at harvest – a safe ML strategy, especially at the low dose of 2.5 mmol per kg of soil.

Abbreviations: DTPA, diethylene triamine pentaacetic acid; EC, electrical capacitance; EDDS, ethylene diamine disuccinic acid; EDTA, ethylene diamine tetraacetic acid; HM, heavy metals; IAA, indoleacetic acid; IBA, indolebutyric acid; ICP‐OES, inductively coupled plasma optical emission spectroscopy; LA, leaf area; ML, metal leaching  相似文献   
367.
To predict P sorption and leaching behavior in calcareous soils, we examined the adsorption and movement of applied P in columns of two calcareous soils. Phosphorus and various other ions were monitored in the leachate of the soil column by passing a 100 mg P l?1 solution through the soil column. Concentrations of P, K+, Ca2+, Mg2+, Na+, HCO? 3, Cl?, EC and pH were determined in the leachates. Movement of K+ and P ions was retarded due to K+ ion-exchange and P adsorption and precipitation, respectively. Phosphorus leaching was affected by supersaturation with respect to P-Ca minerals, but undersaturated with respect to Mg-P minerals. Phosphorus retention based on batch and miscible displacement experiments revealed profound discrepancies that can be attributed to the short residence time of P in the miscible displacement. Breakthrough curves of P and K+ were analyzed by a CXTFIT program. The equilibrium model provides good results to the transport process of P and K+. Results indicated that the mobility of P in these calcareous soils reflects that a high downward movement of water-soluble P in soils may occur and much attention should be paid to leaching of P and potential contamination of P to surface and ground waters.  相似文献   
368.
A test matrix of antifouling (AF) coatings including pMMA, an erodible binder and a novel trityl copolymer incorporating Cu2O and a furan derivative (FD) natural product, were subjected to pontoon immersion and accelerated rotor tests. Fluorescence and optical microscopy techniques were applied to these coatings for quantification of organic biocide and pigment distribution. Total leaching of the biocide from the novel copolymer binder was observed within 6 months of rotor immersion, compared to 35% from the pMMA coating. In pontoon immersions, 61% of the additive was lost from the pMMA coating, and 53% from the erodible binder. Profiles of FD content in the binders revealed an accelerated loss of additive from the surface of the CDP resulting from rosin degradation, compared to even depletion from pMMA. In all samples, release of the biocide was inhibited beyond the Cu2O front, corresponding to the leached layer in samples where Cu2O release occurred.  相似文献   
369.
Short‐rotation woody biomass crops (SRWC) have been proposed as a major feedstock source for bioenergy generation in the Northeastern US. To quantify the environmental effects and greenhouse gas (GHG) balance of crops including SRWC, investigators need spatially explicit data which encompass entire plantation cycles. A knowledge gap exists for the establishment period which makes current GHG calculations incomplete. In this study, we investigated the effects of converting pasture and hayfields to willow (Salix spp.) and hybrid‐poplar (Populus spp.) SRWC plantations on soil nitrogen (N) cycling, nitrous oxide (N2O) emissions, and nitrate (NO3?) leaching at six sites of varying soil and climate conditions across northern Michigan and Wisconsin, following these plantations from pre conversion through their first 2 years. All six sites responded to establishment with increased N2O emissions, available inorganic N, and, where it was measured, NO3? leaching; however, the magnitude of these impacts varied dramatically among sites. Soil NO3? levels varied threefold among sites, with peak extractable NO3? concentrations ranging from 15 to 49 g N kg?1 soil. Leaching losses were significant and persisted through the second year, with 44–112 kg N ha?1 leached in SRWC plots. N2O emissions in the first growing season varied 30‐fold among sites, from 0.5 to 17.0 Mg‐CO2eq ha?1 (carbon dioxide equivalents). N2O emissions over 2 years resulted in N2O emissions due to plantation establishment that ranged from 0.60 to 22.14 Mg‐CO2eq ha?1 above baseline control levels across sites. The large N losses we document herein demonstrate the importance of including direct effects of land conversion in life‐cycle analysis (LCA) studies of SRWC GHG balance. Our results also demonstrate the need for better estimation of spatial variability of N cycling processes to quantify the full environmental impacts of SRWC plantations.  相似文献   
370.
Long-term prescribed fires have increased woody canopy openness and reduced nitrogen (N) cycling (that is, net N mineralization) in an oak savanna in Minnesota, USA. It is unclear how fire-induced shifts from oak-dominated to C4 grass-dominated vegetation contribute to this decline in N cycling compared to direct effects of increasing fire frequency promoting greater N losses. We determined (1) the magnitude of decline in net N mineralization in oak versus grass-dominated patches with increasing fire frequency and (2) if differences in net N mineralization between oak and grass patches in frequently burned oak savanna (burned 8 out of 10 years on average during the last 40 years) could be attributed to differences in N losses through volatilization and leaching or to plant traits affecting decomposition and mineralization. In situ net N mineralization declined with increasing fire frequency overall, but this decline was less in oak- than in grass-dominated patches, with oak-dominated patches having more than two times higher net N mineralization than grass-dominated patches. Greater net N mineralization in oak-dominated patches occurred despite greater N losses through volatilization and leaching (on average 1.8 and 1.4 g m−2 y−1 for oak- and grass-dominated patches, respectively), likely because of higher plant litter N concentration in the oak-dominated patches. As total soil N pools in the first 15 cm did not differ between oak- and grass-dominated patches (on average 83 g N m−2), N inputs from atmospheric deposition and uptake from deep soil layers may offset higher N losses. Our results further show that net N mineralization rates decline within 5 years after tree death and subsequent colonization by C4 grasses to levels observed in grass-dominated patches. Although long-term prescribed fires often directly reduce N stocks and cycling because of increased N losses, this study has shown that fire-induced shifts in vegetation composition can strongly contribute to the declines in N cycling in systems that are frequently disturbed by fires with potential feedbacks to plant productivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号