首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   17篇
  国内免费   63篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   4篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   13篇
  2016年   10篇
  2015年   10篇
  2014年   11篇
  2013年   19篇
  2012年   6篇
  2011年   12篇
  2010年   5篇
  2009年   10篇
  2008年   4篇
  2007年   19篇
  2006年   24篇
  2005年   20篇
  2004年   12篇
  2003年   18篇
  2002年   7篇
  2001年   11篇
  2000年   13篇
  1999年   9篇
  1998年   15篇
  1997年   7篇
  1996年   14篇
  1995年   16篇
  1994年   8篇
  1993年   20篇
  1992年   10篇
  1991年   6篇
  1990年   14篇
  1989年   11篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
排序方式: 共有426条查询结果,搜索用时 890 毫秒
21.
In marine fish larviculture the live feed organisms are often enriched in order to enhance their nutritional value. One of the challenges is to enhance the phospholipids (PL) content, and another is to enhance the content of specific water soluble nutrients, like free amino acids (FAA). There are a few studies where this has been achieved by the use of liposomes. The aim of this study was to develop a simple method for mass-production of liposomes within a size range of 1–5 μm a size range suitable to feed live food organisms. Furthermore, the liposomes should have a high FAA concentration and be stable under conditions typical for short-time enrichment of live feed organisms. The method used in the present study is based on a combination of a reverse-phase evaporation method for preparing liposomes and re-hydration of freeze-dried, empty liposomes. The liposomal membrane was made of soy phosphatydilcholine and was loaded with a highly concentrated free amino acids solution. Most of the liposomes produced were 2–8 μm in diameter and the FAA encapsulation efficiency was 42.6%. Two experiments simulating 2 hr of live food enrichment were used to evaluate the liposomes. The results showed the liposome did not disintegrate or aggregate when suspended in seawater and that only 9% of the FAA content of the liposomes was lost after 2 hr suspension. The developed method was easy and reliable, producing tens of grams of liposomes per batch.  相似文献   
22.
Abstract

Redox reactions of iron in acidic environments are of economic and environmental significance, for example, for the leaching of metal ores and for the formation of acid mine drainage and acid sulfate soils. Until recently, research on microbial iron metabolism in acidic environments has mainly been focused on the role of aerobic, autotrophic ferrous iron‐oxidizing bacteria. In the present paper, recent new developments in the field of acidophilic iron metabolism are reviewed. In addition to the well‐known autotrophic ferrous iron‐oxidizing organisms, new heterotrophic isolates have been described that are capable of oxidizing ferrous iron. Microorganisms can also play an important role in the reductive part of the iron cycle. Both heterotrophic and autotrophic organisms may also be involved in this process. The contribution of heterotrophic organisms to acidophilic iron cycling can be twofold: In addition to their direct role as a catalyst, these organisms may scavenge organic compounds that inhibit their autotrophic counterparts. Detailed studies of acidophilic ecosystems are needed to assess the significance of the various types of microorganisms for the overall rate of iron cycling in these extreme environments.  相似文献   
23.
24.
Leaching of metals due to enhanced mobility during ethylenediaminetetraacetic acid (EDTA)-assisted phytoextraction has been demonstrated as one of the potential hazards associated with this technology. This study was conducted to determine phytoextraction efficiency of Chenopodium album L. for Pb and EDTA-assisted (1.5, 3, and 9 mmol kg?1) phytoextraction and potential for leaching of Pb. The results demonstrated that BCFshoot (bioconcentration factor) was relatively higher than the BCFroot. Translocation factor in the shoot was higher than the roots. Thus, plant species would be applicable for Pb phytoextraction. EDTA enhanced translocation of Pb from roots to shoots. Lead content in the plant parts was maximum in the shoot and root of 9EDTA and 3EDTA, respectively. However, there was no significant difference between 3EDTA and 9EDTA. Lead concentration in the plant parts increased significantly from vegetative stage into flowering stage. Lead content taken up by the plant was lowest when EDTA was applied in a single dose. Therefore, application of EDTA in several increments rather than a single split reduced the leaching risk. Totally, optimum phytoextraction was observed when 3 mmol kg?1 EDTA was added in triple dosage 60 days after the plant cultivation under triple application mode. The results indicated the plant has the potential for Pb phytoextraction, but it should not be used unless the biomass containing such accumulated metal is removed for disposal. Significant improvement over current ETDA-assisted phytoextraction of Pb may be possible but should be implemented cautiously because of environmental risk.  相似文献   
25.
Coal is one of the most important sources of fossil energy on earth. However, direct combustion of coal with a high sulfur content can cause various environmental problems. Other constituents of coal that can cause environmental problems include iron oxide (hematite), iron hydroxide, and silica. In this study, growing and resting cells of Rhodococcus erythropolis strains PD1, R1, and FMF, and R. qingshengii were used in heterotrophic removal of sulfur and bioleaching of iron and silica from coal. All of the mentioned strains have an ability of dibenzothiophene (DBT) desulfurization via 4-S pathway. 2-hydroxybiphenyl, sulfate, and ferric ions (Fe3+) were assayed by Gibb’s test, barium chloride (BaCl2), and thiocyanate ions (SCN?), respectively. FTIR and XRF analyzer were used for detection of the coal bioleaching process by the selected strain of R. erythropolis (PD1). Results indicated that all strains have the ability to grow on coal as the sulfur source. Among them, strain PD1 produced the highest optical density and continued to grow even after 150-h incubation. In both growing- and resting-cells experiments, strain PD1 desulfurized coal most readily compared to other strains. Results of XRF showed that growing cells of strain PD1 had high desulfurizing ability of coal (46%) compared to resting cells in the absence of any carbon sources (24%). Growing cells of strain PD1 also leached 46% of the iron and 14% of the silicate after 7?days of incubation. Resting cells of PD1 leached 32% of the iron as determined by XRF analysis. Also, growing cells of PD1 removed most SiO2 from coal as detected and confirmed by FTIR and XRF. To the best of our knowledge, this is the first report on bioleaching of iron and silica from coal by R. erythropolis strain PD1, making it a suitable candidate for coal bioremediation.  相似文献   
26.
27.
Soil water chemistry and element budgets were studied at three northwestern European Calluna vulgaris heathland sites in Denmark (DK), The Netherlands (NL), and Wales (UK). Responses to experimental nighttime warming and early summer drought were followed during a two-year period. Soil solution chemistry measured below the organic soil layer and below the rooting zone and water fluxes estimated with hydrological models were combined to calculate element budgets. Remarkably high N leaching was observed at the NL heath with 18 and 6.4 kg N ha–1 year–1 of NO3–N and NH4–N leached from the control plots, respectively, indicating that this site is nitrogen saturated. Increased soil temperature of +0.5°C in the heated plots almost doubled the concentrations and losses of NO3–N and DON at this site. Temperature also increased mobilization of N in the O horizon at the UK and DK heaths in the first year, but, because of high retention of N in the vegetation or mineral soil, there were no significant effects of warming on seepage water NO3–N and NH4–N. Retention of P was high at all three sites. In several cases, drought increased concentrations of elements momentarily, but element fluxes decreased because of a lower flux of water. Seepage water DOC and DON was highly significantly correlated at the UK site where losses of N were low, whereas losses of C and N were uncoupled at the NL site where atmospheric N input was greatest. Based on N budgets, calculations of the net change in the C sink or source strength in response to warming suggest no change or an increase in the C sink strength during these early years.  相似文献   
28.
Variations in plant community composition across the landscape can influence nutrient retention and loss at the watershed scale. A striking example of plant species importance is the influence of N2-fixing red alder (Alnus rubra) on nutrient cycling in the forests of the Pacific Northwest. To understand the influence of red alder on watershed nutrient export, we studied the chemistry of 26 small watershed streams within the Salmon River basin of the Oregon Coast Range. Nitrate and dissolved organic nitrogen (DON) concentrations were positively related to broadleaf cover (dominated by red alder: 94% of basal area), particularly when near-coastal sites were excluded (r 2 = 0.65 and 0.68 for nitrate-N and DON, respectively). Nitrate and DON concentrations were more strongly related to broadleaf cover within entire watersheds than broadleaf cover within the riparian area alone, which indicates that leaching from upland alder stands plays an important role in watershed nitrogen (N) export. Nitrate dominated over DON in hydrologic export (92% of total dissolved N), and nitrate and DON concentrations were strongly correlated. Annual N export was highly variable among watersheds (2.4–30.8 kg N ha–1 y–1), described by a multiple linear regression combining broadleaf and mixed broadleaf–conifer cover (r2 = 0.74). Base cation concentrations were positively related to nitrate concentrations, which suggests that nitrate leaching increases cation losses. Our findings provide evidence for strong control of ecosystem function by a single plant species, where leaching from N saturated red alder stands is a major control on N export from these coastal watersheds.  相似文献   
29.
Hagedorn  Frank  Bucher  Jürg B.  Tarjan  David  Rusert  Peter  Bucher-Wallin  Inga 《Plant and Soil》2000,224(2):273-286
The objectives of this study were to estimate how soil type, elevated N deposition (0.7 vs. 7 g N m–2y–1) and tree species influence the potential effects of elevated CO2 (370 vs. 570 mol CO2 mol–1) on N pools and fluxes in forest soils. Model spruce-beech forest ecosystems were established on a nutrient-rich calcareous sand and on a nutrient-poor acidic loam in large open-top chambers. In the fourth year of treatment, we measured N concentrations in the soil solution at different depths, estimated N accumulation by ion exchange resin (IER) bags, and quantified N export in drainage water, denitrification, and net N uptake by trees. Under elevated CO2, concentrations of N in the soil solution were significantly reduced. In the nutrient-rich calcareous sand, CO2 enrichment decreased N concentrations in the soil solution at all depths (–45 to –100%). In the nutrient-poor acidic loam, the negative CO2 effect was restricted to the uppermost 5 cm of the soil. Increasing the N deposition stimulated the negative impact of CO2 enrichment on soil solution N in the acidic loam at 5 cm depth from –20% at low N inputs to –70% at high N inputs. In the nutrient-rich calcareous sand, N additions did not influence the CO2 effect on soil solution N. Accumulation of N by IER bags, which were installed under individual trees, was decreased at high CO2 levels under spruce in both soil types. Under beech, this decrease occurred only in the calcareous sand. N accumulation by IER bags was negatively correlated with current-years foliage biomass, suggesting that the reduction of soil N availability indices was related to a CO2-induced growth enhancement. However, the net N uptake by trees was not significantly increased by elevated CO2. Thus, we suppose that the reduced N concentrations in the soil solution at elevated CO2 concentrations were rather caused by an increased N immobilisation in the soil. Denitrification was not influenced by atmospheric CO2 concentrations. CO2 enrichment decreased nitrate leaching in drainage by 65%, which suggests that rising atmospheric CO2 potentially increases the N retention capacity of forest ecosystems.  相似文献   
30.
A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS < NTS< CTU < NTU −1 for winter wheat system and from 0.99 (CTS) to 6.27 (NTM) kg N Mg−1 for summer maize system for 5 rotation years. The results showed that CTS decreased the yield-scaled -N leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled -N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat–maize double-cropping systems in the North China Plain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号