首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1187篇
  免费   162篇
  国内免费   50篇
  2024年   3篇
  2023年   45篇
  2022年   20篇
  2021年   37篇
  2020年   72篇
  2019年   70篇
  2018年   51篇
  2017年   62篇
  2016年   49篇
  2015年   56篇
  2014年   80篇
  2013年   86篇
  2012年   50篇
  2011年   65篇
  2010年   44篇
  2009年   66篇
  2008年   73篇
  2007年   53篇
  2006年   45篇
  2005年   47篇
  2004年   58篇
  2003年   31篇
  2002年   40篇
  2001年   30篇
  2000年   23篇
  1999年   19篇
  1998年   35篇
  1997年   16篇
  1996年   14篇
  1995年   9篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   7篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有1399条查询结果,搜索用时 125 毫秒
991.
In the face of increasing cumulative effects from human and natural disturbances, sustaining coral reefs will require a deeper understanding of the drivers of coral resilience in space and time. Here we develop a high‐resolution, spatially explicit model of coral dynamics on Australia's Great Barrier Reef (GBR). Our model accounts for biological, ecological and environmental processes, as well as spatial variation in water quality and the cumulative effects of coral diseases, bleaching, outbreaks of crown‐of‐thorns starfish (Acanthaster cf. solaris), and tropical cyclones. Our projections reconstruct coral cover trajectories between 1996 and 2017 over a total reef area of 14,780 km2, predicting a mean annual coral loss of ?0.67%/year mostly due to the impact of cyclones, followed by starfish outbreaks and coral bleaching. Coral growth rate was the highest for outer shelf coral communities characterized by digitate and tabulate Acropora spp. and exposed to low seasonal variations in salinity and sea surface temperature, and the lowest for inner‐shelf communities exposed to reduced water quality. We show that coral resilience (defined as the net effect of resistance and recovery following disturbance) was negatively related to the frequency of river plume conditions, and to reef accessibility to a lesser extent. Surprisingly, reef resilience was substantially lower within no‐take marine protected areas, however this difference was mostly driven by the effect of water quality. Our model provides a new validated, spatially explicit platform for identifying the reefs that face the greatest risk of biodiversity loss, and those that have the highest chances to persist under increasing disturbance regimes.  相似文献   
992.
Large benthic Foraminifera (LBF) are major carbonate producers on coral reefs, and are hosts to a diverse symbiotic microbial community. During warm episodes in the geological past, these reef‐building organisms expanded their geographical ranges as subtropical and tropical belts moved into higher latitudes. During these range‐expansion periods, LBF were the most prolific carbonate producers on reefs, dominating shallow carbonate platforms over reef‐building corals. Even though the fossil and modern distributions of groups of species that harbour different types of symbionts are known, the nature, mechanisms, and factors that influence their occurrence remain elusive. Furthermore, the presence of a diverse and persistent bacterial community has only recently gained attention. We examined recent advances in molecular identification of prokaryotic (i.e. bacteria) and eukaryotic (i.e. microalgae) associates, and palaeoecology, and place the partnership with bacteria and algae in the context of climate change. In critically reviewing the available fossil and modern data on symbiosis, we reveal a crucial role of microalgae in the response of LBF to ocean warming, and their capacity to colonise a variety of habitats, across both latitudes and broad depth ranges. Symbiont identity is a key factor enabling LBF to expand their geographic ranges when the sea‐surface temperature increases. Our analyses showed that over the past 66 million years (My), diatom‐bearing species were dominant in reef environments. The modern record shows that these species display a stable, persistent eukaryotic assemblage across their geographic distribution range, and are less dependent on symbiotic photosynthesis for survival. By contrast, dinoflagellate and chlorophytic species, which show a provincial distribution, tend to have a more flexible eukaryotic community throughout their range. This group is more dependent on their symbionts, and flexibility in their symbiosis is likely to be the driving force behind their evolutionary history, as they form a monophyletic group originating from a rhodophyte‐bearing ancestor. The study of bacterial assemblages, while still in its infancy, is a promising field of study. Bacterial communities are likely to be shaped by the local environment, although a core bacterial microbiome is found in species with global distributions. Cryptic speciation is also an important factor that must be taken into consideration. As global warming intensifies, genetic divergence in hosts in addition to the range of flexibility/specificity within host–symbiont associations will be important elements in the continued evolutionary success of LBF species in a wide range of environments. Based on fossil and modern data, we conclude that the microbiome, which includes both algal and bacterial partners, is a key factor influencing the evolution of LBF. As a result, the microbiome assists LBF in colonising a wide range of habitats, and allowed them to become the most important calcifiers on shallow platforms worldwide during periods of ocean warming in the geologic past. Since LBF are crucial ecosystem engineers and prolific carbonate producers, the microbiome is a critical component that will play a central role in the responses of LBF to a changing ocean, and ultimately in shaping the future of coral reefs.  相似文献   
993.
Room‐temperature (RT) sodium–sulfur (Na–S) batteries are attractive cost‐effective platforms as the next‐generation energy storage systems by using all earth‐abundant resources as electrode materials. However, the slow kinetics of Na–S chemistry makes it hard to achieve high‐rate performance. Herein, a facile and scalable approach has been developed to synthesize hollow sodium sulfide (Na2S) nanospheres embedded in a highly hierarchical and spongy conductive carbon matrix, forming an intriguing architecture similar to the morphology of frogspawn coral, which has shown great potential as a cathode for high‐rate performance RT Na–S batteries. The shortened Na‐ion diffusion pathway benefits from the hollow structures together with the fast electron transfer from the carbon matrix contributes to high electrochemical reactivity, leading to superior electrochemical performance at various current rates. At high current densities of 1.4 and 2.1 A g?1, high initial discharge capacities of 980 and 790 mAh g?1sulfur can be achieved, respectively, with reversible capacities stabilized at 600 and 400 mAh g?1sulfur after 100 cycles. As a proof of concept, a Na‐metal‐free Na–S battery is demonstrated by pairing the hollow Na2S cathode with tin‐based anode. This work provides guidance on rational materials design towards the success of RT high‐rate Na–S batteries.  相似文献   
994.
During the last century, the global biogeochemical cycles of carbon (C) and nitrogen (N) have been drastically altered by human activities. A century of land‐clearing and biomass burning, followed by fossil fuel combustion have increased the concentration of atmospheric CO2 by approximately 20%, and since the mid‐1900s, the use of agricultural fertilizers has been the primary driver of an approximate 90% increase in bioavailable N. Geochemical records obtained through stable isotope analysis of terrestrial and marine biota effectively illustrate rising anthropogenic C inputs. However, there are fewer records of anthropogenic N, despite the enormous magnitude of change and the known negative effects of N on ecosystem health. We used stable isotope values from independent octocorals (gorgonians) sampled across the Western Atlantic over the last 143 years to document human perturbations of the marine C and N pools. Here, we demonstrate that in sea plumes δ13C values and in both sea plumes and sea fans δ15N values declined significantly from 1862 to 2005. Sea plume δ 13C values were negatively correlated with increasing atmospheric CO2 concentrations and corroborate known rates of change resulting from global fossil fuel combustion, known as the Suess effect. We suggest that widespread input of agricultural fertilizers to near‐shore coastal waters is the dominant driver for the decreasing δ 15N trend, though multiple anthropogenic sources are likely affecting this trend. Given the interest in using δ 15N as an indicator for N pollution in aquatic systems, we highlight the risk of underestimating contributions of pollutants as a result of source mixing as demonstrated by a simple isotope‐mixing model. We conclude that signals of major human‐induced perturbations of the C and N pools are detectable in specimens collected over wide geographic scales, and that archived materials are invaluable for establishing baselines against which we can assess environmental change.  相似文献   
995.
珊瑚礁生态系的一般特点   总被引:15,自引:1,他引:15  
随着工业化和城市化的不断发展 ,陆地上的资源在飞速地被消耗掉 ,生态环境也受到了严重的破坏 ,人们迫切地需要寻找新的资源和更好的环境 ,海洋因此成为首选。珊瑚礁生态系是海洋中生产力水平极高的生态系之一 ,被称为是“热带海洋沙漠中的绿洲” ,“海洋中的热带雨林”。由于其在全球海洋的过程与资源方面具有重要地位 ,而目前正受到生态退化的威胁 ,因而得到更多的关注。国际上将 1997年定为“珊瑚礁年”以普及人们的珊瑚礁保护与恢复意识和责任。本文介绍了珊瑚礁生态系的一些特点 ,分析了影响珊瑚礁生态系的自然和人为因素 ,并提出了保…  相似文献   
996.
997.
三种适生植物对热带珊瑚岛胁迫生境的生理生化响应   总被引:1,自引:3,他引:1  
为了解热带珊瑚岛对植物生长的影响,对狗牙根(Cynodon dactylon)、大叶相思(Acacia auriculaeformis)和木麻黄(Casuarina equisetifolia)在热带珊瑚岛的生态适应性进行了研究。结果表明,与海南文昌苗木基地的同种植物相比,珊瑚岛胁迫生境下3种植物叶片中的抗氧化酶活性(SOD、CAT和POD)和脯氨酸含量均显著提高(P0.05);大叶相思和狗牙根的丙二醛含量也极显著提高(P0.01),但木麻黄则没有显著变化。这表明这些植物可以通过提高抗氧化酶活性和渗透调节物质含量来适应珊瑚岛的胁迫生境。  相似文献   
998.
Understanding the potential for coral adaptation to warming seas is complicated by interactions between symbiotic partners that define stress responses and the difficulties of tracking selection in natural populations. To overcome these challenges, we characterized the contribution of both animal host and symbiotic algae to thermal tolerance in corals that have already experienced considerable warming on par with end‐of‐century projections for most coral reefs. Thermal responses in Platygyra daedalea corals from the hot Persian Gulf where summer temperatures reach 36°C were compared with conspecifics from the milder Sea of Oman. Persian Gulf corals had higher rates of survival at elevated temperatures (33 and 36°C) in both the nonsymbiotic larval stage (32–49% higher) and the symbiotic adult life stage (51% higher). Additionally, Persian Gulf hosts had fixed greater potential to mitigate oxidative stress (31–49% higher) and their Symbiodinium partners had better retention of photosynthetic performance under elevated temperature (up to 161% higher). Superior thermal tolerance of Persian Gulf vs. Sea of Oman corals was maintained after 6‐month acclimatization to a common ambient environment and was underpinned by genetic divergence in both the coral host and symbiotic algae. In P. daedalea host samples, genomewide SNP variation clustered into two discrete groups corresponding with Persian Gulf and Sea of Oman sites. Symbiodinium within host tissues predominantly belonged to ITS2 rDNA type C3 in the Persian Gulf and type D1a in the Sea of Oman contradicting patterns of Symbiodinium thermal tolerance from other regions. Our findings provide evidence that genetic adaptation of both host and Symbiodinium has enabled corals to cope with extreme temperatures in the Persian Gulf. Thus, the persistence of coral populations under continued warming will likely be determined by evolutionary rates in both, rather than single, symbiotic partners.  相似文献   
999.
 In recent years, marine scientists have become increasingly alarmed over the decline of live coral cover throughout the Caribbean and tropical western Atlantic region. The Holocene and Pleistocene fossil record of coral reefs from this region potentially provides a wealth of long-term ecologic information with which to assess the historical record of changes in shallow water coral reef communities. Before fossil data can be applied to the modern reef system, critical problems involving fossil preservation must be addressed. Moreover, it must be demonstrated that the classic reef coral zonation patterns described in the early days of coral reef ecology, and upon which “healthy” versus “unhealthy” reefs are determined, are themselves representative of reefs that existed prior to any human influence. To address these issues, we have conducted systematic censuses of life and death assemblages on modern “healthy” patch reefs in the Florida reef tract that conform to the classic Caribbean model of reef coral zonation, and a patch reef in the Bahamas that is currently undergoing a transition in coral dominance that is part of a greater Caribbean-wide phenomenon. Results were compared to censuses of ancient reef assemblages preserved in Pleistocene limestones in close proximity to each modern reef. We have determined that the Pleistocene fossil record of coral reefs may be used to calibrate an ecological baseline with which to compare modern reef assemblages, and suggest that the current and rapid decline of Acropora cervicornis observed on a Bahamian patch reef may be a unique event that contrasts with the long-term persistence of this taxon during Pleistocene and Holocene time. Accepted: 19 May 1998  相似文献   
1000.
Coral reefs are the most biodiverse of all marine ecosystems. Bacteria are known to be abundant and active in seawater around corals, inside coral tissues, and within their surface microlayer. Very little is known, however, about the structure, composition and maintenance of these bacterial communities. In the current study we characterize the culturable bacterial community within the mucus of healthy specimens of the Red Sea solitary coral Fungia scutaria. This was achieved using culture-based methods and molecular techniques for the identification of the bacterial isolates. More than 30% of the isolated bacteria were novel species and a new genus. The culturable heterotrophic bacterial community of the mucus of this coral is composed mainly of the bacterial groups Gammaproteobacteria, Alphaproteobacteria and of Actinobacteria. This study provides the first evidence of actinomycetes isolated from corals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号