首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8286篇
  免费   546篇
  国内免费   1318篇
  10150篇
  2023年   135篇
  2022年   253篇
  2021年   283篇
  2020年   259篇
  2019年   286篇
  2018年   250篇
  2017年   273篇
  2016年   340篇
  2015年   334篇
  2014年   388篇
  2013年   732篇
  2012年   312篇
  2011年   357篇
  2010年   275篇
  2009年   388篇
  2008年   356篇
  2007年   382篇
  2006年   391篇
  2005年   316篇
  2004年   327篇
  2003年   307篇
  2002年   288篇
  2001年   195篇
  2000年   179篇
  1999年   168篇
  1998年   157篇
  1997年   159篇
  1996年   125篇
  1995年   146篇
  1994年   165篇
  1993年   151篇
  1992年   134篇
  1991年   98篇
  1990年   87篇
  1989年   115篇
  1988年   78篇
  1987年   73篇
  1986年   69篇
  1985年   106篇
  1984年   152篇
  1983年   98篇
  1982年   100篇
  1981年   66篇
  1980年   52篇
  1979年   57篇
  1978年   43篇
  1977年   25篇
  1976年   34篇
  1974年   26篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
In situ digestion of metaphase and polytene chromosomes and of interphase nuclei in different cell types ofDrosophila nasuta with restriction enzymes revealed that enzymes like AluI, EcoRI, HaeIII, Sau3a and SinI did not affect Giemsa-stainability of heterochromatin while that of euchromatin was significantly reduced; TaqI and SalI digested both heterochromatin and euchromatin in mitotic chromosomes. Digestion of genomic DNA with AluI, EcoRI, HaeIII, Sau3a and KpnI left a 23 kb DNA band undigested in agarose gels while withTaqI, no such undigested band was seen. TheAluI resistant 23 kb DNA hybridized insitu specifically with the heterochromatic chromocentre. It appears that the digestibility of heterochromatin region in genome ofDrosophila nasuta with the tested restriction enzymes is dependent on the availability of their recognition sites.  相似文献   
52.
The activity of the enzyme responsible for the conversion of norsolorinic acid to averantin was studied in two strains of Aspergillus parasiticus. Cell-free extracts of the enzyme were purified from different aged mycelia and little activity was found prior to 24 hours after inoculation but this quickly reached a maximum at 48 hours and declined thereafter. Both strains of A. parasiticus, one in aflatoxin producing strain, the other a versicolorin A accumulating mutant, showed this trend. It was concluded that the enzyme responsible for this conversion was a secondary metabolic enzyme and was distinct from alcohol and mannitol dehydrogenases.  相似文献   
53.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   
54.
The electrophoretic patterns of the enzyme alcohol dehydrogenase (ADH) from Anastrepha fraterculus and A. obliqua were studied. Two loci were found to code for the enzyme in A. fraterculus, and three in A. obliqua. In both species, all isozymes were active in third-instar larvae. A cationic isozyme (Adh-1) was active mainly in the visceral fat body of both species. In A. fraterculus, the locus had an anionic polymorphic isozyme (Adh-3) that was detected in the parietal fat body. In addition to these two loci, a third locus for an anionic isozyme (Adh-2), which was active in the digestive tube of larvae, was present in A. obliqua and probably resulted from gene duplication. For both species, multiple forms of the isozymes are formed by binding of an NAD-carbonyl compound, as in Drosophila melanogaster. Both larvae and early pupae of A. obliqua had almost twice the specific ADH activity as A. fraterculus. The ethanol content of the host fruit infested with A. obliqua (red mombim) was also higher than that of the host fruit infested with A. fraterculus (guava).This research was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq-PIG 40.2486/82).  相似文献   
55.
Hyla chrysoscelis (2n=24) and H. versicolor (2n=48) are a diploid-tetraploid species pair of treefrogs. Restriction endonuclease mapping of ribosomal RNA (rRNA) gene repeat units of diploids collected from eastern and western populations reveals no differences within rRNA gene coding regions but distinctive differences within the nontranscribed spacers. A minimum of two physical maps is required to construct an rRNA gene map for the tetraploid, whose repeat units appear to be a composite, with about 50% of the elements resembling the western diploid population and about 50% resembling the eastern population. These results imply that this population of the tetraploid species may have arisen from a genetically hybrid diploid. Alternatively, the dual level of sequence heterogeneity in H. versicolor may reflect some type of gene flow between the two species. The coding region of the rRNA genes in the tetraploid differs from that in either diploid in about 20% of all repeat units, as exemplified by a BamHI site located near the 5 terminus of the 28 S rRNA gene. If the 20% variant class of 28 S rRNA gene coding sequences is expressed, then there must be two structural classes of ribosomes; if only the 80% sequence class is expressed, then a genetic control mechanism must be capable of distinguishing between the two different sequence variants. It is postulated that the 20% variant sequence class may be correlated with a partial functional diploidization of rRNA genes in the tetraploid species.This research was supported, in part, by NSF Grants CDP-8002341 and PRM-8106947 and by faculty research grants from Miami University to J.C.V.  相似文献   
56.
57.
58.
Summary Both simultaneous and consecutive mechanisms for Na+–Ca++ exchange are formulated and the associated systems of steady-state equations are solved numerically, and the net and unidirectional Ca++ fluxes computed for a variety of ionic and electrical boundary conditions. A simultaneous mechanism is shown to be consistent with a broad range of experimental data from the squid giant axon, cardiac muscle and isolated sarcolemmal vesicles. In this mechanism, random binding of three Na+ ions and one Ca++ on apposing sides of a membrane are required before a conformational change can occur, translocating the binding sites to the opposite sides of the membranes. A similar (return) translocation step is also permitted if all the sites are empty. None of the other states of binding can undergo such translocating conformational changes. The resulting reaction scheme has 22 reaction steps involving 16 ion-binding intermediates. The voltage dependence of the equilibrium constant for the overall reaction, required by the 31 Na+Ca++ stoichiometry was obtained by multiplying and dividing, respectively, the forward and reverse rate constants of one of the translocational steps by exp(–FV/2RT). With reasonable values for the membrane density of the enzyme (120 sites m2) and an upper limit for the rate constants of both translocational steps of 105·sec–1, satisfactory behavior was obtainable with identical binding constants for Ca++ on the two sides of the membrane (106 m –1), similar symmetry also being assumed for the Na+ binding constant (12 to 60m –1). Introduction of order into the ion-binding process eliminates behavior that is consistent with experimental findings.  相似文献   
59.
In extracts of flax seedlings 4 days after imbibition, isocitrate lyase activity is unstable in comparison to that in extracts from 2.5-day seedlings or to malate syntheses analysed at several stages of development. This instability in extracts of 4-day seedlings is especially pronounced when a large number of seedlings is homogenized per unit volume of Tris-Mg2+-EDTA-dithioerythritol buffer. However, isocitrate lyase can be stabilized when the resultant homogenate is diluted soon after seedling breakage. The pronounced instability in more concentrated extracts is not due to inadequate buffering by the homogenization medium, nor can it be due to polyphenols because added polyvinylpyrrolidone has no effect. Mixing of a heated supernatant from concentrated extract with dilute unheated extract yields the units of stable isocitrate lyase expected in the dilute extract, ruling out stoichiometric inactivation by a heat-stable component. The pronounced instability is attributed to the action of proteinases. A theoretical model assuming a decay process that is first order in isocitrate lyase and first-order in one or more proteinases is in reasonable agreement with the results. Malate synthase and NADP+-isocitrate dehydrogenase are much more stable in concentrated extracts prepared from 4-day flax seedlings. Isocitrate lyase is stable in concentrated extracts of 5-day watermelon seedlings, which is a developmental stage analogous to that for 4-day flax seedlings.  相似文献   
60.
The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m–2 under nitrogen and 50 W·m–2 under air, while NADP photoreduction was saturated at 240 W·m–2. Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.Abbreviations Fd ferredoxin - FBPase fructose-1,6-bisphosphatase - FTR ferredoxin-thioredoxin reductase - LEM light effect mediator - NADP-MDH NADP-malate dehydrogenase - Td thioredoxin  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号