首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2054篇
  免费   85篇
  国内免费   115篇
  2023年   22篇
  2022年   23篇
  2021年   22篇
  2020年   32篇
  2019年   26篇
  2018年   33篇
  2017年   28篇
  2016年   24篇
  2015年   38篇
  2014年   54篇
  2013年   79篇
  2012年   47篇
  2011年   33篇
  2010年   38篇
  2009年   64篇
  2008年   95篇
  2007年   92篇
  2006年   99篇
  2005年   83篇
  2004年   88篇
  2003年   112篇
  2002年   84篇
  2001年   68篇
  2000年   70篇
  1999年   67篇
  1998年   58篇
  1997年   62篇
  1996年   66篇
  1995年   55篇
  1994年   52篇
  1993年   58篇
  1992年   35篇
  1991年   47篇
  1990年   45篇
  1989年   43篇
  1988年   40篇
  1987年   35篇
  1986年   26篇
  1985年   46篇
  1984年   30篇
  1983年   21篇
  1982年   26篇
  1981年   28篇
  1980年   24篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1974年   4篇
  1972年   3篇
排序方式: 共有2254条查询结果,搜索用时 15 毫秒
31.
Summary Experiments, performed withPinus pinaster cloned shoots submitted to an auxin treatment (NAA 10–6 M, 18 days), demonstrated that rooting abilityin vitro persists over 5 successive induction cycles (through out a 9-month period). Rooting ability needs a permanent synthesis of auxin synergists which activate the metabolism of cell dedifferentiation and root primordium initiation. Agar culture permitted intense meristem initiation, but prevented active root elongation. In the presence of a mycorrhizal fungus,Pisolithus tinctorius orHebeloma cylindrosporum, roots resumed growth and short lateral root formation was stimulated. These two phenomena induced by fungal association improve the quality of the root systems required to facilitate successful transplantation from test-tubes to field conditions.  相似文献   
32.
After incubation for 3 h with (75Se) selenate, the selenium distribution in the bean plant (Phaseolus vulgaris L. cv. Contender) through a 29-day period showed an uneven distribution: roots and trifoliate leaves were richer in 75Se than stem and primary leaves. The high selenium concentration of roots resulted from the retention of selenate by the root cells: at the end of the 29-day period about 60° of the radioactivity was always ethanol-soluble, and when analysed by paper chromatography, proved to be selenate. By contrast, much of the radioactivity of the leaves was ethanol-insoluble, 75Se being quickly captured in metabolic processes which immobilize it. During plant development, a portion of the total selenium remains mobile and is continually mobilized to the younger organs which display a rapid growth rate. This delivery results from a progressive liberation of selenate retained by mature organs, especially the roots, and from turnover in older leaf tissues, especially the trifoliate leaves.  相似文献   
33.
Rice root glutamate synthase activity was assayed with various reducing systems. Ferredoxin-dependent glutamate synthase (EC 1.4.7.1) and pyridine nucleotide-dependent glutamate synthase (NADH, EC 1.4.1.14; or NADPH, EC 1.4.1.13) exhibited a strict specificity for the electron donor. The ferredoxin-dependent glutamate synthase from rice roots could accept electrons from photoreduced ferredoxin in an illuminated reconstituted spinach chloroplast system. Thioredoxin, a potent electron carrier, was not able to provide either ferredoxin-dependent or pyridine nucleotide-dependent glutamate synthase with electrons as no glutamate formation was detected in the presence of reduced thioredoxin f or m.  相似文献   
34.
Root development was studied in winter wheat ( Triticum aestivum L. cv Starke II) grown at 5,10, 15 and 20°C in nutrient solutions with phosphate concentrations of 10, 100 or 1000 μM . The plants were grown for 38 days (5 and 10°C), 19 days (15°C) or 14 days (20°C). At the end of the cultivation period the phosphate influx in the roots was determined with 32P-phosphate. Root development (lateral and seminal roof length and number) was monitored throughout the cultivation period on the same individuals by repeated (approximately every second day) photocopying of the roots for measurements with digitizer and appropriate software. The 5°C treatment yielded no laterals, and the seminals were only slightly affected by the different phosphate treatments. The 10 μM phosphate treatment gave high root:shoot dry weight ratio, high average lateral root length and high specific root length [m root (g root fresh weight)-1]. The 1000 μM phosphate treatment yielded the highest number of laterals per m seminal root, and usually also the highest absolute numbers. Phosphate influx decreased with increased P status of the roots. It is argued that phosphate influx is dependent on factors such as P status, root geometry and relative root extension rate.  相似文献   
35.
It has long been assumed that Al3+ is an important rhizotoxic ion in acid soils around the world, but the toxicity of Al3+ relative to mononuclear hydroxy-Al [AlOH2+ and Al(OH)+2] has been examined in detail only for an Al-sensitive wheat variety ( Triticum aestivum L. cv. Tyler). That plant appears to be sensitive to Al3+ but not to AlOH2+ and Al(OH)+2. New experiments, and reanalyses of previously published experiments, provide evidence that dicotyledonous species may be sensitive to mononuclear hydroxy-Al and that Al3+ may be nontoxic, or less toxic, to those plants. Despite these consistently measured differences between wheat and the dicotyledons, the determination of relative toxicities (Al3+ vs mononuclear hydroxy-Al) may be an intractable problem. Because of hydrolysis equilibria, (AlOH2+) and (Al(OH)+2) are equivalent to (Al3+)k1(H+)−1 and (l3+)k2(H+)−2, respectively, in which k1 and k2 are the first and second hydrolysis constants (braces denote activities). Thus, any expression of root elongation as a function of mononuclear hydroxy-Al can be alternatively expressed as a function of (Al3+) and (H+). Toxicity attributed to mononuclear hydroxy-Al may actually be Al3+ toxicity that increases as pH rises (i.e. Al3+ toxicity ameliorated by H+).  相似文献   
36.
37.
The roots and mycorrhizas of herbaceous woodland plants   总被引:4,自引:0,他引:4  
  相似文献   
38.
Tomato root growth and distribution were related to inorganic nitrogen (N) availability and turnover to determine 1) if roots were located in soil zones where N supply was highest, and 2) whether roots effectively depleted soil N so that losses of inorganic N were minimized. Tomatoes were direct-seeded in an unfertilized field in Central California. A trench profile/monolith sampling method was used. Concentrations of nitrate (NO3 -) exceeded those of ammonium (NH4 +) several fold, and differences were greater at the soil surface (0–15 cm) than at lower depths (45–60 cm or 90–120 cm). Ammonium and NO3 - levels peaked in April before planting, as did mineralizable N and nitrification potential. Soon afterwards, NO3 - concentrations decreased, especially in the lower part of the profile, most likely as a result of leaching after application of irrigation water. Nitrogen pool sizes and rates of microbial processes declined gradually through the summer.Tomato plants utilized only a small percentage of the inorganic N available in the large volume of soil explored by their deep root systems; maximum daily uptake was approximately 3% of the soil pool. Root distribution, except for the zone around the taproot, was uniformly sparse (ca. 0.15 mg dry wt g-1 soil or 0.5 cm g-1 soil) throughout the soil profile regardless of depth, distance from the plant stem, or distance from the irrigation furrow. It bore no relation to N availability. Poor root development, especially in the N-rich top layer of soil, could explain low fertilizer N use by tomatoes.  相似文献   
39.
The effect of Si(OH)4 on Cr toxicity and elemental concentrations in ryegrass were investigated in a growth chamber using an acid and a neutral mineral soil. Each soil was treated with 50 mg Cr, as CrO3, kg−1 soil dry weight, singly, or in combination with 25 mg Si as Si(OH)4. Plants growing in unamended soils were used as controls. Chromium toxicity, expressed as decrease in shoot or root dry weight, was increased by the Si. This increase was accompanied by a higher Cr uptake particularly on the acid soil. The shoot and root dry weights were significantly correlated (P=1%) with the concentration of Cr, where r=−0.80 and −0.65, respectively. Uptake of Al, Cu, Fe, P and Zn did not show any consistent relationship to the magnitude of Cr toxicity.  相似文献   
40.
Small diameter (<1.0-mm) Acer saccharum Marsh roots were separated into white, brown and woody development state classes and analyzed for total N and C concentrations in April, July and October of 1988. White roots had greater concentrations of N and C than either brown or woody roots at each sampling date, and the N concentration of brown roots was consistently greater than that of woody roots. There were no temporal changes in N concentrations in any of the roots. C was slightly elevated in mid-summer in all three classes of roots. The data suggest the possible existence of an N translocation mechanism in ageing and developing fine roots. More research should be undertaken to establish the mechanisms of N loss in developing fine roots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号