首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2020篇
  免费   97篇
  国内免费   145篇
  2262篇
  2024年   3篇
  2023年   27篇
  2022年   30篇
  2021年   25篇
  2020年   23篇
  2019年   27篇
  2018年   31篇
  2017年   82篇
  2016年   69篇
  2015年   53篇
  2014年   77篇
  2013年   71篇
  2012年   27篇
  2011年   65篇
  2010年   62篇
  2009年   185篇
  2008年   213篇
  2007年   183篇
  2006年   164篇
  2005年   124篇
  2004年   107篇
  2003年   79篇
  2002年   56篇
  2001年   24篇
  2000年   46篇
  1999年   33篇
  1998年   38篇
  1997年   29篇
  1996年   28篇
  1995年   25篇
  1994年   18篇
  1993年   26篇
  1992年   32篇
  1991年   24篇
  1990年   24篇
  1989年   18篇
  1988年   30篇
  1987年   25篇
  1986年   9篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   7篇
  1981年   6篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1974年   1篇
  1971年   1篇
  1963年   1篇
排序方式: 共有2262条查询结果,搜索用时 15 毫秒
61.
Remaining populations of plant species in fragmented landscapes are threatened by declining habitat quality and reduced genetic diversity, but the interactions of these major factors are rarely studied together for species conservation. In this study, the interactions between population size, habitat quality, genetic diversity and fitness were investigated in 22 populations of the clonal herb Cirsium dissectum throughout the British Isles. Regression analysis was used to identify significant factors, and a structural equation model was developed to illustrate and integrate these interactions. It was found that smaller populations (measured as the total number of plants) had lower genetic diversity (proportion of polymorphic loci), and that reduced genetic diversity (allelic richness) had a negative impact on the survival of seedlings grown under standard conditions. Habitat quality also had a large effect on C. dissectum. Unmanaged sites with tall vegetation, no bare soil and higher nutrient levels had smaller populations of C. dissectum, but flowering was promoted. Flowering was suppressed in heavily grazed sites with short vegetation. Higher levels of bare soil and phosphorus both had a positive relationship with genetic diversity, but probably for distinctly different reasons: bare soil provides safe sites for establishment, whilst phosphorus may promote flowering and improve seed germination. In order to conserve C. dissectum, management needs to maintain site heterogeneity so that C. dissectum can flower and establishment gaps are still available for seedlings; when either component is reduced, negative feedbacks through reduced genetic diversity and individual fitness can be expected. This study therefore highlights the importance of considering both conservation genetics and habitat quality in the conservation of plant species.  相似文献   
62.
Studies on the effects of within-patch scale structure of seagrass habitats on predator–prey fish interactions and abundance/habitat use patterns were reviewed. Most laboratory experiments have employed chase-and-attack predators, usually resulting in lower foraging efficiency in (denser) seagrass. However, a few laboratory procedures employed alternative foraging tactics, resulting in no differences in prey mortality rates. Field studies did not always result in lower prey mortality rates in seagrass habitats. Accordingly, it is premature to conclude that seagrass presence is almost always negatively related to predator foraging efficiency or that increasing seagrass abundance is usually associated with a decrease in predator efficiency. Because several categories of predator and prey fishes occur in seagrass habitats, further studies are needed with all of these predator–prey combinations, in order to fully clarify predator–prey fish interactions in association with seagrass structure. Seagrass fishes have been shown to respond to alterations in seagrass structure in various ways: seagrass height and/or density reduction or clearance resulted in decreased abundance of some species but increases or no change in others. Some explanations have been proposed, not all mutually exclusive, for these phenomena. Although within-patch scale processes have been well studied, room exists for improvement. For example, predator–prey fish interactions in relation to varying within-patch scale complexity is not yet fully understand. The relationships of patch size, edge effects and within-patch scale complexity also still remain unclear. Further studies, which add to the clarification of within-patch scale process, will in turn improve our understanding of larger spatial scale processes.  相似文献   
63.
Land abandonment is causing woodland expansion and loss of open habitats in the Alps, coupled with a shift in forestry practices from coppice management to high forest. Despite such rapid large-scale changes, there has been very little investigation of the environmental predictors of biodiversity in the Alpine landscape. We assessed the richness of amphibians, reptiles and breeding birds (n = 189 species), used as a surrogate of biodiversity, in 58 quadrats of 100 km2, located within a well surveyed area of the province of Trento (central-eastern Italian Alps). The surrogates were then related to a series of environmental variables by means of stepwise multiple regression. Depending on the surrogate analysed, species richness declined linearly or quadratically with elevation, and increased with habitat heterogeneity and the availability of grassland and arid-rocky habitats. The same results were obtained when incorporating a measure of species threat into the biodiversity estimates. Different surrogates were positively inter-correlated, probably because of a common response to the same factor, namely elevation, which was the only variable to enter all models. Such elevational gradient produced a clear biodiversity peak in low-elevation areas, generating potential conflict between efficient biodiversity conservation and economic interests linked to human development, a scenario which probably applies to many mountain regions worldwide. The current network of protected areas was quite satisfactory in terms of area covered but biased towards high-elevation areas, of high scenic beauty but relatively low in animal biodiversity value. Low-elevation reserves were small and isolated. Proposed conservation targets include the establishment of corridors increasing the connectivity of low-elevation reserves and the promotion of incentives for the extensive management of grassland, an agro-ecosystem of high historical and biological value.  相似文献   
64.
Given the rate of projected environmental change for the 21st century, urgent adaptation and mitigation measures are required to slow down the on-going erosion of biodiversity. Even though increasing evidence shows that recent human-induced environmental changes have already triggered species’ range shifts, changes in phenology and species’ extinctions, accurate projections of species’ responses to future environmental changes are more difficult to ascertain. This is problematic, since there is a growing awareness of the need to adopt proactive conservation planning measures using forecasts of species’ responses to future environmental changes.

There is a substantial body of literature describing and assessing the impacts of various scenarios of climate and land-use change on species’ distributions. Model predictions include a wide range of assumptions and limitations that are widely acknowledged but compromise their use for developing reliable adaptation and mitigation strategies for biodiversity. Indeed, amongst the most used models, few, if any, explicitly deal with migration processes, the dynamics of population at the “trailing edge” of shifting populations, species’ interactions and the interaction between the effects of climate and land-use.

In this review, we propose two main avenues to progress the understanding and prediction of the different processes occurring on the leading and trailing edge of the species’ distribution in response to any global change phenomena. Deliberately focusing on plant species, we first explore the different ways to incorporate species’ migration in the existing modelling approaches, given data and knowledge limitations and the dual effects of climate and land-use factors. Secondly, we explore the mechanisms and processes happening at the trailing edge of a shifting species’ distribution and how to implement them into a modelling approach. We finally conclude this review with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world.  相似文献   

65.
Questions: To what extent are the distributions of tropical rain forest tree ferns (Cyatheaceae) related to environmental variation, and is habitat specialization likely to play a role in their local coexistence? Location: Lowland rain forest at La Selva Biological Station, Costa Rica. Methods: Generalized linear (GLM) and generalized additive (GAM) logistic regression were used to model the incidence of four tree fern species in relation to environmental and neighbourhood variables in 1154 inventory plots regularly distributed across 6 km2 of old‐growth forest. Small and large size classes of the two most abundant species were modelled separately to see whether habitat associations change with ontogeny. Results: GLM and GAM model results were similar. All species had significant distributional biases with respect to micro‐habitat. Environmental variables describing soil variation were included in the models most often, followed by topographic and forest structural variables. The distributions of small individuals were more strongly related to environmental variation than those of larger individuals. Significant neighbourhood effects (spatial autocorrelation in intraspecific distributions and non‐random overlaps in the distributions of certain species pairs) were also identified. Overlaps between congeners did not differ from random, but there was a highly significant overlap in the distributions of the two most common species. Conclusions: Our results support the view that habitat specialization is an important determinant of where on the rain forest landscape tree ferns grow, especially for juvenile plants. However, other factors, such as dispersal limitation, may also contribute to their local coexistence.  相似文献   
66.
Understanding the habitat requirements of a species for breeding is essential for its conservation, particularly if the availability of suitable habitat is a limiting factor for population growth. This is postulated to be the case for grey seals, one of the more abundant marine apex predators in northern European waters. In common with similar studies that have investigated the habitat preferences of breeding grey seals, we use abiotic (topographical, climatological) attributes but, unlike previous work, we also incorporate behavioural variables, particularly the occurrence of aggressive interactions between females and the presence of neighbouring seals. We used two Generalized Additive Models (GAM) in a sequential and iterative fashion. The first model links the occurrence of aggression at particular points in the colony to local topography derived from a Geographical Information System (GIS), presence of neighbouring seal pups and the day of the breeding season. The output of this GAM is used as one of the explanatory variables in a GAM of daily variation in the spatial distribution of births. Although proximity of a birth site to a water source and the presence of neighbouring seal pups both had significant influences on the distribution of newborn pups over time and space, at the scale of the study site it was found that simple rules could predict pup distribution more efficiently than a complex individual-based simulation model.  相似文献   
67.
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.  相似文献   
68.
完达山东部林区野猪种群数量和栖息地特征的初步分析   总被引:3,自引:0,他引:3  
2008 年11 月18 日至2009 年3 月20 日,为了调查黑龙江省完达山东部林区野猪种群数量和栖息地特征,我们采用随机布设样线的方法在东方红林业局境内13 个林场共布设大样方40 个,样线200 条。调查结果表明,东方红林业局境内野猪分布平均密度为0.175 头/ km2 , 种群数量为546 ~ 680 头;野猪主要分布在河口、奇源、青山、五林洞、独木河、海音山和东林7 个林场,位于海拔300 ~ 800 m 的范围内。1989 年调查的野猪平均密度为0.372 头/ km2 ,种群数量为1302 ; 2002 年调查的野猪平均密度为0. 342 头/ km2 , 种群数量为1 198 头。近年来野猪种群密度降低,种群数量呈加速下降趋势。对野猪栖息地特征分析表明,野猪喜欢选择中坡位、阳坡、坡度小于5°、地表植被盖度大于30% 、隐蔽度和郁闭度在25% ~ 50% 之间的生境。阔叶林、灌丛是野猪的主要栖息地。非法捕猎、森林采伐、坚果采摘和东北虎的捕食是造成野猪种群数量减少、栖息地质量下降的主要因素。  相似文献   
69.
We summarise the contributions of empiricists, modellers, and practitioners in this issue of Biodiversity and Conservation, and highlight the most important areas for future research on species survival in fragmented landscapes. Under the theme uncertainty in research and management, we highlight five areas for future research. First, we know little about the effects of density dependence on the viability of metapopulations, a requirement for fragmented landscapes. Second, successful early attempts suggest that it is worth developing more rigorous calibration methods for population viability analysis with spatially explicit, individual-based models. In particular, the balance between model complexity, ease of calibration, and precision, needs to be addressed. Third, we need to improve methods to discriminate between models, including alternatives to time-series approaches. Fourth, when our ability to reduce model uncertainty is weak, we need to incorporate this uncertainty in population viability analysis. Fifth, population viability analysis and decision analysis can be integrated to make uncertainty an explicit part of the decision process. An important future direction is extending the decision framework to adaptive management. Under the theme tools for quantifying risk and predicting species sensitivity to fragmentation, we highlight three areas for future research. First, we need to develop tools to support comparative approaches to population viability analysis. Second, population modelling can be used to find rules of thumb to support conservation decisions when very little is known about a species. Rules of thumb need to be extended to the problem of managing for multiple species. Third, species traits might be useful for predicting sensitivity but predictions could be further refined by considering the relative importance of population processes at different scales. Under the theme tools for reassembling fragmented landscapes, we consider the focal species approach, and highlight aspects of the approach that require more rigorous testing. Finally, we highlight two important areas for future research not presented in the previous themes or papers in this volume. First, we need to incorporate the deterministic effects of habitat modification into the modelling framework of population viability analysis. Second, an avenue of research that remains largely unexplored is the combination of landscape-scale experiments and population modelling, especially using data from existing fragmentation experiments and from experiments designed to test the effects of defragmenting landscapes.  相似文献   
70.
Competitive interactions and invasibility between short- and long-distance dispersal was investigated in a population on a heterogeneous landscape with spatial correlations in habitat types, and where the driving interaction between individuals is competition for space. Stochastic spatially explicit simulations were used, along with differential equation models based on pair approximations. Conditions under which either dispersal strategy can successfully invade the other were determined, as a function of the amount and clustering of suitable habitat and the relative costs involved in the two dispersal strategies. Long-distance dispersal, which reduces intraspecific competition, is sometimes advantageous even where aggregation of suitable habitat would otherwise favor short-distance dispersal, although certain habitat distributions can lead to either strategy being dominant. Coexistence is also possible on some landscapes, where the spatial structure of the populations partitions suitable sites according to the number of suitable neighboring sites. Mutual competitive exclusion, where whichever strategy is established first cannot be invaded, is also possible. All of these results are observed even when there is no intrinsic difference in the two strategies' costs, such as mortality or competitive abilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号