首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   11篇
  国内免费   10篇
  285篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   14篇
  2018年   9篇
  2017年   8篇
  2016年   6篇
  2015年   7篇
  2014年   36篇
  2013年   38篇
  2012年   22篇
  2011年   23篇
  2010年   18篇
  2009年   20篇
  2008年   12篇
  2007年   11篇
  2006年   9篇
  2005年   12篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1992年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
61.
The impact of DNA damage-induced replication blockage for early activation of stress kinases [stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)] is largely unknown. Here, we show that induction of dual phosphorylation of SAPK/JNK by the DNA polymerase inhibitor aphidicolin was not ameliorated by additional exposure to ultraviolet (UV) light, indicating that overlapping mechanisms participate in signaling to SAPK/JNK triggered by both agents. UV-induced DNA replication blockage, cyclobutane pyrimidine dimer formation and DNA strand break induction coincided with SAPK/JNK phosphorylation at early (≤ 30 min) but not late (≥ 2 h) time points after exposure. Genotoxin-stimulated SAPK/JNK activation was attenuated in nonproliferating cells, indicating that S phase-dependent mechanisms are involved in signaling to SAPK/JNK. Correspondingly, UV-induced phosphorylation of SAPK/JNK was higher in S-phase cells as compared with G1-phase cells. Activation of SAPK/JNK by genotoxins was below detection limit in nonproliferating human peripheral blood lymphocytes, whereas peripheral blood lymphocytes stimulated to proliferation displayed clear SAPK/JNK activation. UV-induced phosphorylation of SAPK/JNK was attenuated in XPC-defective cells, ameliorated in BRCA2 mutated cells and not changed in cells lacking ATM, DNA-PK, CSB, XPA, p53, ERCC1 or PARP as compared with the corresponding wild types. Based on these data, we suggest that DNA replication blockage caused by genotoxin-induced DNA damage contributes to early activation of SAPK/JNK.  相似文献   
62.
Halorhodopsin from Natronomonas pharaonis (NpHR) is a member of the retinal protein group and serves as a light-driven chloride pump in which chloride ions are transported through the membrane following light absorption by the retinal chromophore. In this study, we examined two main issues: (1) factors controlling the binding of the retinal chromophore to the NpHR opsin and (2) the ability of the NpHR opsin to catalyze the thermal isomerization of retinal isomers. We have revealed that the reconstitution process of pharaonis HR (NpHR) pigment from its apoprotein and all-trans retinal depends on the pH, and the process has a pKa of 5.8 ± 0.1. It was proposed that this pKa is associated with the pKa of the lysine residue that binds the retinal chromophore (Lys256). The pigment formation is regulated by the concentration of sodium chloride, and the maximum yield was observed at 3.7 M NaCl. The low yield of pigment in a lower concentration of NaCl (< 3 M) may be due to an altered conformation adopted by the apomembrane, which is not capable of forming the pigment. Unexpectedly and unlike the apomembrane of bacteriorhodopsin, NpHR opsin produces pigments with 11-cis retinal and 9-cis retinal owing to the thermal isomerization of these retinal isomers to all-trans retinal. The isomerization rate depends on the pH, and it is faster at a higher pH. The pKa value of the isomerization process is similar to the pKa of the binding process of these retinals, which suggests that Lys256 is also involved in the isomerization process. The isomerization is independent of the sodium chloride concentration. However, in the absence of sodium chloride, the apoprotein adopts such a conformation, which does not prevent the isomerization of retinal, but it prevents a covalent bond formation with the lysine residue. The rate and the thermodynamic parameter analysis of the retinal isomerization by NpHR apoprotein led to the conclusion that the apomembrane catalyzes the isomerization via a triplet mechanism.  相似文献   
63.
Channelrhodopsins (ChRs) of green algae such as Chlamydomonas are used as neuroscience tools to specifically depolarize cells with light. A crude model of the ChR2 photocycle has been recently established, but details of the photoreactions are widely unknown. Here, we present the photoreactions of a slow-cycling ChR2 mutant (step function rhodopsin), with C128 replaced by threonine and 200-fold extended lifetime of the conducting-state P520. At a late state of the photocycle, a fraction of the proteins branches off into an inactive species, P380, which accumulates during prolonged illumination. At neutral pH, P380 is converted into P353, a species with a characteristic fine-structured spectrum that is interpreted as retroretinyl chromophore. The described branching reactions should be considered, when ChR is used as a neuroscience tool, especially in the case of fluorescence imaging at high light intensities.  相似文献   
64.
Efficient DNA double-strand break (DSB) repair is a critical determinant of cell survival in response to DNA damaging agents, and it plays a key role in the maintenance of genomic integrity. Homologous recombination (HR) and non-homologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. We now understand that HR and NHEJ repair are composed of multiple sub-pathways, some of which still remain poorly understood. As such, there is great interest in the development of novel assays to interrogate these key pathways, which could lead to the development of novel therapeutics, and a better understanding of how DSBs are repaired. Furthermore, assays which can measure repair specifically at endogenous chromosomal loci are of particular interest, because of an emerging understanding that chromatin interactions heavily influence DSB repair pathway choice. Here, we present the design and validation of a novel, next-generation sequencing-based approach to study DSB repair at chromosomal loci in cells. We demonstrate that NHEJ repair “fingerprints” can be identified using our assay, which are dependent on the status of key DSB repair proteins. In addition, we have validated that our system can be used to detect dynamic shifts in DSB repair activity in response to specific perturbations. This approach represents a unique alternative to many currently available DSB repair assays, which typical rely on the expression of reporter genes as an indirect read-out for repair. As such, we believe this tool will be useful for DNA repair researchers to study NHEJ repair in a high-throughput and sensitive manner, with the capacity to detect subtle changes in DSB repair patterns that was not possible previously.  相似文献   
65.
A mouse monoclonal antibody, LP4D3, was raised against purified Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) fused to glutathione-S-transferase. The antibody detected endogenous and exogenous EBNA-LP in immunoblotting, immunofluorescence and immunoprecipitation assays, and the epitope of the antibody was mapped in the W2 domain of EBNA-LP. While another monoclonal antibody to EBNA-LP, JF186, which is widely used for analyses of the viral protein, did not react with truncated forms of EBNA-LP expressed in P3HR1 cells, as reported earlier, the LP4D3 antibody did. The LP4D3 antibody will be a useful tool for further studies of EBNA-LP, especially investigations into the phenotypes of mutant EBNA-LP expressed in P3HR1 cells.  相似文献   
66.
The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.  相似文献   
67.
68.
RecQ-like helicases are a highly conserved family of proteins which are critical for preserving genome integrity. Genome instability is considered a hallmark of cancer and mutations within three of the five human RECQ genes cause hereditary syndromes that are associated with cancer predisposition. The human RecQ-like helicase BLM has a central role in DNA damage signaling, repair, replication, and telomere maintenance. BLM and its budding yeast orthologue Sgs1 unwind double-stranded DNA intermediates. Intriguingly, BLM functions in both a pro- and anti-recombinogenic manner upon replicative damage, acting on similar substrates. Thus, BLM activity must be intricately controlled to prevent illegitimate recombination events that could have detrimental effects on genome integrity. In recent years it has become evident that post-translational modifications (PTMs) of BLM allow a fine-tuning of its function. To date, BLM phosphorylation, ubiquitination, and SUMOylation have been identified, in turn regulating its subcellular localization, protein–protein interactions, and protein stability. In this review, we will discuss the cellular context of when and how these different modifications of BLM occur. We will reflect on the current model of how PTMs control BLM function during DNA damage repair and compare this to what is known about post-translational regulation of the budding yeast orthologue Sgs1. Finally, we will provide an outlook toward future research, in particular to dissect the cross-talk between the individual PTMs on BLM.  相似文献   
69.
The mosquito Aedes aegypti is the principal vector of dengue, one of the most devastating arthropod-borne viral infections in humans. The isoform specific A/B region, called the N-terminal domain (NTD), is hypervariable in sequence and length and is poorly conserved within the Ultraspiracle (Usp) family. The Usp protein together with ecdysteroid receptor (EcR) forms a heterodimeric complex. Up until now, there has been little data on the molecular properties of the isolated Usp-NTD. Here, we describe the biochemical and biophysical properties of the recombinant NTD of the Usp isoform B (aaUsp-NTD) from A. aegypti. These results, in combination with in silico bioinformatics approaches, indicate that aaUsp-NTD exhibits properties of an intrinsically disordered protein (IDP). We also present the first experimental evidence describing the dimerization propensity of the isolated NTD of Usp. These characteristics also appear for other members of the Usp family in different species, for example, in the Usp-NTD from Drosophila melanogaster and Bombyx mori. However, aaUsp-NTD exhibits the strongest homodimerization potential. We postulate that the unique dimerization of the NTD might be important for Usp function by providing an additional platform for interactions, in addition to the nuclear receptor superfamily dimerization via DNA binding domains and ligand binding domains that has already been extensively documented. Furthermore, the unique NTD–NTD interaction that was observed might contribute new insight into the dimerization propensities of nuclear receptors.  相似文献   
70.
Ultraviolet (UV) radiation-induced DNA damage evokes a complex network of molecular responses, which culminate in DNA repair, cell cycle arrest and apoptosis. Here, we provide an in-depth characterization of the molecular pathway that mediates UV-C-induced apoptosis of meiotic germ cells in the nematode Caenorhabditis elegans. We show that UV-C-induced DNA lesions are not directly pro-apoptotic. Rather, they must first be recognized and processed by the nucleotide excision repair (NER) pathway. Our data suggest that NER pathway activity transforms some of these lesions into other types of DNA damage, which in turn are recognized and acted upon by the homologous recombination (HR) pathway. HR pathway activity is in turn required for the recruitment of the C. elegans homolog of the yeast Rad9-Hus1-Rad1 (9-1-1) complex and activation of downstream checkpoint kinases. Blocking either the NER or HR pathway abrogates checkpoint pathway activation and UV-C-induced apoptosis. Our results show that, following UV-C, multiple DNA repair pathways can cooperate to signal to the apoptotic machinery to eliminate potentially hazardous cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号