首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   10篇
  国内免费   10篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   14篇
  2018年   9篇
  2017年   8篇
  2016年   6篇
  2015年   7篇
  2014年   36篇
  2013年   38篇
  2012年   22篇
  2011年   23篇
  2010年   18篇
  2009年   20篇
  2008年   12篇
  2007年   11篇
  2006年   9篇
  2005年   12篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1992年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
51.
Synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA) are the two main homologous recombination (HR) pathways in double‐strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss‐of‐function mutants of rad51 paralogs show increased sensitivity to the DSB‐inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K‐like kinases in wild‐type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K‐like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog‐dependent somatic HR.  相似文献   
52.
53.
A helical, prehairpin trimer covering the majority of the HR1 region of human immunodeficiency virus gp41 was achieved by chemically coupling three identical 51 amino acid peptides. A 1,3,5‐tris(aminomethyl)‐2,4,6‐triethylbenzene pinwheel ‘cap’ was used to trimerize the peptides by taking advantage of the unique property of triacyl fluoride and orthogonal protection and deprotection. The resulting protein is fully helical, highly thermostable and soluble. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
54.
A double -strand break (DSB) is one of the most deleterious forms of DNA damage. In eukaryotic cells, two main repair pathways have evolved to repair DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is the predominant pathway of repair in the unicellular eukaryotic organism, S. cerevisiae. However, during replicative aging the relative use of HR and NHEJ shifts in favor of end-joining repair. By monitoring repair events in the HO-DSB system, we find that early in replicative aging there is a decrease in the association of long-range resection factors, Dna2-Sgs1 and Exo1 at the break site and a decrease in DNA resection. Subsequently, as aging progressed, the recovery of Ku70 at DSBs decreased and the break site associated with the nuclear pore complex at the nuclear periphery, which is the location where DSB repair occurs through alternative pathways that are more mutagenic. End-bridging remained intact as HR and NHEJ declined, but eventually it too became disrupted in cells at advanced replicative age. In all, our work provides insight into the molecular changes in DSB repair pathway during replicative aging. HR first declined, resulting in a transient increase in the NHEJ. However, with increased cellular divisions, Ku70 recovery at DSBs and NHEJ subsequently declined. In wild type cells of advanced replicative age, there was a high frequency of repair products with genomic deletions and microhomologies at the break junction, events not observed in young cells which repaired primarily by HR.  相似文献   
55.
Most plants are resistant to the majority of pathogens. Susceptibility is the exception to the more common state of resistance, i.e., being refractory to infection. However, plant pathogens cause serious economic losses by reducing crop yield and quality. Although such organisms are relatively simple genetic entities, in plants, the mechanisms underlying the generation of disease symptoms and resistance responses are complex and, often, unknown. The study of genes associated with plant-pathogen resistance addresses fundamental questions about the molecular, biochemical, cellular, and physiological means of these interactions. Over the past 10 years, the cloning and analysis of numerous plant resistance genes has led researchers to formulate unifying theories about resistance and susceptibility, and the co-evolution of plant pathogens and their hosts. In this review, we discuss the identification of response genes that have been characterized at the molecular level, as well as their putative links to various signaling pathways. We also summarize the knowledge regarding crosstalk among signaling pathways and plant resistance genes.  相似文献   
56.
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2 Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.  相似文献   
57.
Efficient DNA double-strand break (DSB) repair is a critical determinant of cell survival in response to DNA damaging agents, and it plays a key role in the maintenance of genomic integrity. Homologous recombination (HR) and non-homologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. We now understand that HR and NHEJ repair are composed of multiple sub-pathways, some of which still remain poorly understood. As such, there is great interest in the development of novel assays to interrogate these key pathways, which could lead to the development of novel therapeutics, and a better understanding of how DSBs are repaired. Furthermore, assays which can measure repair specifically at endogenous chromosomal loci are of particular interest, because of an emerging understanding that chromatin interactions heavily influence DSB repair pathway choice. Here, we present the design and validation of a novel, next-generation sequencing-based approach to study DSB repair at chromosomal loci in cells. We demonstrate that NHEJ repair “fingerprints” can be identified using our assay, which are dependent on the status of key DSB repair proteins. In addition, we have validated that our system can be used to detect dynamic shifts in DSB repair activity in response to specific perturbations. This approach represents a unique alternative to many currently available DSB repair assays, which typical rely on the expression of reporter genes as an indirect read-out for repair. As such, we believe this tool will be useful for DNA repair researchers to study NHEJ repair in a high-throughput and sensitive manner, with the capacity to detect subtle changes in DSB repair patterns that was not possible previously.  相似文献   
58.
59.
Atomic-level structural information on αB-Crystallin (αB), a prominent member of the small heat-shock protein family, has been a challenge to obtain due its polydisperse oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on an ∼ 580-kDa human αB assembled from 175-residue 20-kDa subunits. An ∼ 100-residue α-crystallin domain is common to all small heat-shock proteins, and solution-state NMR was performed on two different α-crystallin domain constructs isolated from αB. In vitro, the chaperone-like activities of full-length αB and the isolated α-crystallin domain are identical. Chemical shifts of the backbone and Cβ resonances have been obtained for residues 64-162 (α-crystallin domain plus part of the C-terminus) in αB and the isolated α-crystallin domain by solid-state and solution-state NMR, respectively. Both sets of data strongly predict six β-strands in the α-crystallin domain. A majority of residues in the α-crystallin domain have similar chemical shifts in both solid-state and solution-state, indicating similar structures for the domain in its isolated and oligomeric forms. Sites of intersubunit interaction are identified from chemical shift differences that cluster to specific regions of the α-crystallin domain. Multiple signals are observed for the resonances of M68 in the oligomer, identifying the region containing this residue as existing in heterogeneous environments within αB. Evidence for a novel dimerization motif in the human α-crystallin domain is obtained by a comparison of (i) solid-state and solution-state chemical shift data and (ii) 1H-15N heteronuclear single quantum coherence spectra as a function of pH. The isolated α-crystallin domain undergoes a dimer-monomer transition over the pH range 7.5-6.8. This steep pH-dependent switch may be important for αB to function optimally (e.g., to preserve the filament integrity of cardiac muscle proteins such as actin and desmin during cardiac ischemia, which is accompanied by acidosis).  相似文献   
60.
The impact of DNA damage-induced replication blockage for early activation of stress kinases [stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)] is largely unknown. Here, we show that induction of dual phosphorylation of SAPK/JNK by the DNA polymerase inhibitor aphidicolin was not ameliorated by additional exposure to ultraviolet (UV) light, indicating that overlapping mechanisms participate in signaling to SAPK/JNK triggered by both agents. UV-induced DNA replication blockage, cyclobutane pyrimidine dimer formation and DNA strand break induction coincided with SAPK/JNK phosphorylation at early (≤ 30 min) but not late (≥ 2 h) time points after exposure. Genotoxin-stimulated SAPK/JNK activation was attenuated in nonproliferating cells, indicating that S phase-dependent mechanisms are involved in signaling to SAPK/JNK. Correspondingly, UV-induced phosphorylation of SAPK/JNK was higher in S-phase cells as compared with G1-phase cells. Activation of SAPK/JNK by genotoxins was below detection limit in nonproliferating human peripheral blood lymphocytes, whereas peripheral blood lymphocytes stimulated to proliferation displayed clear SAPK/JNK activation. UV-induced phosphorylation of SAPK/JNK was attenuated in XPC-defective cells, ameliorated in BRCA2 mutated cells and not changed in cells lacking ATM, DNA-PK, CSB, XPA, p53, ERCC1 or PARP as compared with the corresponding wild types. Based on these data, we suggest that DNA replication blockage caused by genotoxin-induced DNA damage contributes to early activation of SAPK/JNK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号