首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   10篇
  国内免费   10篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   14篇
  2018年   9篇
  2017年   8篇
  2016年   6篇
  2015年   7篇
  2014年   36篇
  2013年   38篇
  2012年   22篇
  2011年   23篇
  2010年   18篇
  2009年   20篇
  2008年   12篇
  2007年   11篇
  2006年   9篇
  2005年   12篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1992年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
41.
Halorhodopsin from Natronomonas pharaonis (pHR) was previously crystallized into a monoclinic space group C2, and the structure of the chloride-bound purple form was determined. Here, we report the crystal structures of two chloride-free forms of pHR, that is, an O-like blue form and an M-like yellow form. When the C2 crystal was soaked in a chloride-free alkaline solution, the protein packing was largely altered and the yellow form containing all-trans retinal was generated. Upon neutralization, this yellow form was converted into the blue form. From structural comparison of the different forms of pHR, it was shown that the removal of a chloride ion from the primary binding site (site I), which is located between the retinal Schiff base and Thr126, is accompanied by such a deformation of helix C that the side chain of Thr126 moves toward helix G, leading to a significant shrinkage of site I. A large structural change is also induced in the chloride uptake pathway, where a flip motion of the side chain of Glu234 is accompanied by large movements of the surrounding aromatic residues. Irrespective of different charge distributions at the active site, there was no large difference in the structures of the yellow form and the blue form. It is shown that the yellow-to-purple transition is initiated by the entrance of one water and one HCl to the active site, where the proton and the chloride ion in HCl are transferred to the Schiff base and site I, respectively.  相似文献   
42.
Channelrhodopsin-2 (ChR2) is the prototype of a new class of light-gated ion channels that is finding widespread applications in optogenetics and biomedical research. We present a  6-Å projection map of ChR2, obtained by cryo-electron microscopy of two-dimensional crystals grown from pure, heterologously expressed protein. The map shows that ChR2 is the same dimer with non-crystallographic 2-fold symmetry in three different membrane crystals. This is consistent with biochemical analysis, which shows a stable dimer in detergent solution. Comparison to the projection map to bacteriorhodopsin indicates a similar structure of seven transmembrane alpha helices. Based on the projection map and sequence alignments, we built a homology model of ChR2 that potentially accounts for light-induced channel gating. Although a monomeric channel is not ruled out, comparison to other membrane channels and transporters suggests that the ChR2 channel is located at the dimer interface on the 2-fold axis, lined by transmembrane helices 3 and 4.  相似文献   
43.
44.
45.
Cohesins are conserved and essential Structural Maintenance of Chromosomes (SMC) protein-containing complexes that physically interact with chromatin and modulate higher-order chromatin organization. Cohesins mediate sister chromatid cohesion and cellular long-distance chromatin interactions affecting genome maintenance and gene expression. Discoveries of mutations in cohesin's subunits and its regulator proteins in human developmental disorders, so-called “cohesinopathies,” reveal crucial roles for cohesins in development and cellular growth and differentiation. In this review, we discuss the latest findings concerning cohesin's functions in higher-order chromatin architecture organization and gene regulation and new insight gained from studies of cohesinopathies. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.  相似文献   
46.
47.
48.
DNA recombinases (RecA in bacteria, Rad51 in eukarya and RadA in archaea) catalyse strand exchange between homologous DNA molecules, the central reaction of homologous recombination, and are among the most conserved DNA repair proteins known. RecA is the sole protein responsible for this reaction in bacteria, whereas there are several Rad51 paralogs that cooperate to catalyse strand exchange in eukaryotes. All archaea have at least one (and as many as four) RadA paralog, but their function remains unclear. Herein, we show that the three RadA paralogs encoded by the Sulfolobus solfataricus genome are expressed under normal growth conditions and are not UV inducible. We demonstrate that one of these proteins, Sso2452, which is representative of the large archaeal RadC subfamily of archaeal RadA paralogs, functions as an ATPase that binds tightly to single-stranded DNA. However, Sso2452 is not an active recombinase in vitro and inhibits D-loop formation by RadA. We present the high-resolution crystal structure of Sso2452, which reveals key structural differences from the canonical RecA family recombinases that may explain its functional properties. The possible roles of the archaeal RadA paralogs in vivo are discussed.  相似文献   
49.
The molecular biology of disease resistance   总被引:22,自引:0,他引:22  
  相似文献   
50.
Biofilms are ubiquitous in the natural and man-made environment. They are defined as microbes that are encapsulated in an extracellular, self-produced, biofilm matrix. Growing evidence from the genetic and biochemical analysis of single species biofilms has linked the presence of fibrous proteins to a functional biofilm matrix. Some of these fibers have been described as functional amyloid or amyloid-like fibers. Here we provide an overview of the biophysical and biological data for a wide range of protein fibers found in the biofilm matrix of Gram-positive and Gram-negative bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号