首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2868篇
  免费   88篇
  国内免费   30篇
  2986篇
  2023年   18篇
  2022年   35篇
  2021年   37篇
  2020年   39篇
  2019年   93篇
  2018年   89篇
  2017年   48篇
  2016年   56篇
  2015年   101篇
  2014年   184篇
  2013年   182篇
  2012年   197篇
  2011年   255篇
  2010年   201篇
  2009年   166篇
  2008年   179篇
  2007年   157篇
  2006年   180篇
  2005年   185篇
  2004年   137篇
  2003年   81篇
  2002年   46篇
  2001年   17篇
  2000年   19篇
  1999年   13篇
  1998年   18篇
  1997年   16篇
  1996年   15篇
  1995年   17篇
  1994年   11篇
  1993年   12篇
  1992年   7篇
  1990年   4篇
  1989年   7篇
  1988年   8篇
  1987年   8篇
  1986年   8篇
  1985年   4篇
  1984年   22篇
  1983年   28篇
  1982年   20篇
  1981年   11篇
  1980年   9篇
  1979年   8篇
  1978年   8篇
  1977年   3篇
  1976年   9篇
  1975年   3篇
  1974年   7篇
  1973年   4篇
排序方式: 共有2986条查询结果,搜索用时 15 毫秒
31.
Recent diabetes and obesity research has been focused on the role of intracellular lipids in insulin resistance. Fatty acyl-coenzyme A (CoA) esters play a central role in the trafficking of intracellular lipids, but there has not previously been a method with which to quantify their kinetics using tracer methodology. We have therefore developed a high-performance liquid chromatography (HPLC)-mass spectrometry method to simultaneously measure the (13)C stable isotopic enrichment of palmitoyl-acyl-CoA ester and the concentrations of five individual long-chain fatty acyl-CoA esters extracted from muscle tissue samples. The long-chain fatty acyl-CoA can be effectively extracted from frozen muscle tissue samples and baseline separated by a reverse-phase HPLC with the presence of a volatile reagent-triethylamine. Negative ion electrospray mass spectrometry with selected ion monitoring was used to analyze the fatty acyl-CoAs to achieve reliable quantification of their concentrations and (13)C isotopic enrichment. Applying this protocol to rabbit muscle samples demonstrates that it is a sensitive, accurate, and precise method for the quantification of long-chain fatty acyl-CoA concentrations and enrichment.  相似文献   
32.
We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database(YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a singlelaboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography–tandem mass spectrometry(LC–MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring(MRM)/selective reaction monitoring(SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results.  相似文献   
33.
The stoichiometry, geometry, stability, and solubility of the inclusion complexes of melatonin (MLT) with native cyclomaltooligosaccharides (alpha-, beta- or gamma-cyclodextrins, CDs) are determined experimentally by high-resolution NMR spectroscopy, calorimetric and solubility measurements, and mass spectrometry. The observed differences are discussed in terms of molecular recognition expression of the host-guest (h-g) interactions within the hydrophobic CDs cavities of different size. The 1:1 h-g stoichiometry in water solution prevails at low CD concentrations; the trend to form higher order associations is observed at increasing CD concentrations. The stability order beta-CD>gamma-CD>alpha-CD for the complexes in water solution and beta-CD>alpha-CD>gamma-CD for the protonated or alkali-cationated complexes in the gas phase are rationalized on the grounds of the structural data from NMR spectroscopy and of the thermodynamic parameters from calorimetric measurements.  相似文献   
34.
Abstract: The aim was to study the extent to which leu-cine furnishes α-NH2 groups for glutamate synthesis via branched-chain amino acid aminotransferase. The transfer of N from leucine to glutamate was determined by incubating astrocytes in a medium containing [15N]leucine and 15 unlabeled amino acids; isotopic abundance was measured with gas chromatography-mass spectrometry. The ratio of labeling in both [15N]glutamate/[15N]leucine and [2-15N]glutamine/[15N]leucine suggested that at least one-fifth of all glutamate N had been derived from leucine nitrogen. At the same time, enrichment in [15N]leucine declined, reflecting dilution of the 16N label by the unlabeled amino acids that were in the medium. Isotopic abundance in [16N]-isoleucine increased very quickly, suggesting the rapidity of transamination between these amino acids. The appearance of 15N in valine was more gradual. Measurement of branched-chain amino acid transaminase showed that the reaction from leucine to glutamate was approximately six times more active than from glutamate to leucine (8.72 vs. 1.46 nmol/min/mg of protein). However, when the medium was supplemented with α-ketoisocaproate (1 mM), the ketoacid of leucine, the reaction readily ran in the “reverse” direction and intraastrocytic [glutamate] was reduced by ~50% in only 5 min. Extracellular concentrations of α-ketoisocaproate as low as 0.05 mM significantly lowered intracellular [glutamate]. The relative efficiency of branched-chain amino acid transamination was studied by incubating astrocytes with 15 unlabeled amino acids (0.1 mM each) and [15N]glutamate. After 45 min, the most highly labeled amino acid was [15N]alanine, which was closely followed by [15N]leucine and [15N]isoleucine. Relatively little 15N was detected in any other amino acids, except for [15N]serine. The transamination of leucine was ~17 times greater than the rate of [1-14C]leucine oxidation. These data indicate that leucine is a major source of glutamate nitrogen. Conversely, reamination of a-ketoisocaproate, the ketoacid of leucine, affords a mechanism for the temporary “buffering” of intracellular glutamate.  相似文献   
35.
生物复苏——大绝灭后生物演化历史的第一幕   总被引:11,自引:1,他引:11  
生命史是一部生物界短期,快速剧变与长期,慢速稳定相互交替的历史。大绝灭(即集群绝灭)事件反映了全球环境的大突变,点断了地质历史中的生命记录及其发展历程,预示着生物界的演化出现了最有意义的飞跃,近年来尝试研究大绝灭后全球生物界的残存-复苏及其基本型式,并探索复苏的控制因素,标志着地质科学中一个重心的转移(即从大绝灭转向其后的生物残存与复苏的研究)。生物复苏揭示了大绝灭后生物演化历史的第一幕,其研究的  相似文献   
36.
37.
Human physiological activities and pathological changes arise from the coordinated interactions of multiple molecules. Mass spectrometry (MS)-based multi-omics and MS imaging (MSI)-based spatial omics are powerful methods used to investigate molecular information related to the phenotype of interest from homogenated or sliced samples, including the qualitative, relative quantitative and spatial distributions. Molecular network strategy provides efficient methods to help us understand and mine the biological patterns behind the phenotypic data. It illustrates and combines various relationships between molecules, and further performs the molecule identification and biological interpretation. Here, we describe the recent advances of network-based analysis and its applications for different biological processes, such as, obesity, central nervous system diseases, and environmental toxicology.  相似文献   
38.
39.
In this work we present and compare the results of extensive molecular dynamics simulations of model systems comprising an Aβ1–40 peptide in water in interaction with short peptides (β-sheet breakers) mimicking the 17–21 region of the Aβ1–40 sequence. Various systems differing in the customized β-sheet breaker structure have been studied. Specifically we have considered three kinds of β-sheet breakers, namely Ac-LPFFD-NH2 and two variants thereof, one obtained by substituting the acetyl group with the sulfonic amino acid taurine (Tau-LPFFD-NH2) and a second novel one in which the aspartic acid is substituted by an asparagine (Ac-LPFFN-NH2). Thioflavin T fluorescence, circular dichroism, and mass spectrometry experiments have been performed indicating that β-sheet breakers are able to inhibit in vitro fibril formation and prevent the β sheet folding of portions of the Aβ1–40 peptide. We show that molecular dynamics simulations and far UV circular dichroism provide consistent evidence that the new Ac-LPFFN-NH2 β-sheet breaker is more effective than the other two in stabilizing the native α-helix structure of Aβ1–40. In agreement with these results thioflavin T fluorescence experiments confirm the higher efficiency in inhibiting Aβ1–40 aggregation. Furthermore, mass spectrometry data and molecular dynamics simulations consistently identified the 17–21 Aβ1–40 portion as the location of the interaction region between peptide and the Ac-LPFFN-NH2 β-sheet breaker.  相似文献   
40.
Diabetes with or without the presence of hypertension damages the heart. However, there is currently a lack of information about these associated pathologies and the alteration of linked proteins. For these reasons, we were interested in the potential synergistic interaction of diabetes and hypertension in the heart, focusing on the proteome characterization of the pathological phenotypes and the associated hypertrophic response. We treated normotensive and spontaneously hypertensive (SHR) rats with either streptozotocin or vehicle. After 22 weeks, type-I diabetic (DM1), SHR, SHR/DM1 and control left-ventricles were studied using proteomic approaches. Proteomics revealed that long-term DM1, SHR and SHR/DM1 rats exhibited 24, 53 and 53 altered proteins in the myocardia, respectively. DM1 myocardium showed over-expression of apoptotic and cytoskeleton proteins, and down-regulation of anti-apoptotic and mitochondrial metabolic enzymes. In both SHR and SHR/DM1 these changes were exacerbated and free fatty-acid (FFA) ß-oxidation enzymes were additionally decreased. Furthermore, SHR/DM1 hearts exhibited a misbalance of specific pro-hypertrophic, anti-apoptotic and mitochondrial ATP-carrier factors, which could cause additional damage. Differential proteins were validated and then clustered into different biological pathways using bioinformatics. These studies suggested the implication of FFA-nuclear receptors and hypertrophic factors in these pathologies. Although key ß-oxidation enzymes were not stimulated in DM1 and hypertensive hearts, peroxisome proliferator-activated receptors-α (PPARα) were potentially activated for other responses. In this regard, PPARα stimulation reduced hypertrophy and pro-hypertrophic factors such as annexin-V in high-glucose and angiotensin-II induced cardiomyocytes. Thus, activation of PPARα could reflect a compensatory response to the metabolic-shifted, apoptotic and hypertrophic status of the hypertensive-diabetic cardiomyopathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号