首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76769篇
  免费   5059篇
  国内免费   2728篇
  2023年   1197篇
  2022年   1577篇
  2021年   2512篇
  2020年   2482篇
  2019年   3442篇
  2018年   2984篇
  2017年   2148篇
  2016年   2112篇
  2015年   2579篇
  2014年   5003篇
  2013年   6582篇
  2012年   3834篇
  2011年   4973篇
  2010年   3750篇
  2009年   4059篇
  2008年   4091篇
  2007年   4129篇
  2006年   3708篇
  2005年   3220篇
  2004年   2846篇
  2003年   2261篇
  2002年   2041篇
  2001年   1237篇
  2000年   967篇
  1999年   982篇
  1998年   987篇
  1997年   777篇
  1996年   696篇
  1995年   615篇
  1994年   573篇
  1993年   439篇
  1992年   436篇
  1991年   367篇
  1990年   296篇
  1989年   246篇
  1988年   214篇
  1987年   187篇
  1986年   164篇
  1985年   346篇
  1984年   571篇
  1983年   413篇
  1982年   436篇
  1981年   352篇
  1980年   278篇
  1979年   244篇
  1978年   222篇
  1977年   200篇
  1976年   167篇
  1975年   159篇
  1973年   152篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
p21WAF1 is a well-characterized mediator of cell cycle arrest and may also modulate chemotherapy-induced cell death. The role of p21WAF1 in drug-induced cell cycle arrest and apoptosis of acute lymphoblastic leukemia (ALL) cells was investigated using p53-functional patient-derived xenografts (PDXs), in which p21WAF1 was epigenetically silenced in T-cell ALL (T-ALL), but not in B-cell precursor (BCP)-ALL PDXs. Upon exposure to diverse cytotoxic drugs, T-ALL PDX cells exhibited markedly increased caspase-3/7 activity and phosphatidylserine (PS) externalization on the plasma membrane compared with BCP-ALL cells. Despite dramatic differences in apoptotic characteristics between T-ALL and BCP-ALL PDXs, both ALL subtypes exhibited similar cell death kinetics and were equally sensitive to p53-inducing drugs in vitro, although T-ALL PDXs were significantly more sensitive to the histone deacetylase inhibitor vorinostat. Transient siRNA suppression of p21WAF1 in the BCP-ALL 697 cell line resulted in a moderate depletion of the cell fraction in G1 phase and marked increase in PS externalization following exposure to etoposide. Furthermore, stable lentiviral p21WAF1 silencing in the BCP-ALL Nalm-6 cell line accelerated PS externalization and cell death following exposure to etoposide and vorinostat, supporting previous findings. Finally, the Sp1 inhibitor, terameprocol, inhibited p21WAF1 expression in Nalm-6 cells exposed to vorinostat and also partially augmented vorinostat-induced cell death. Taken together, these findings demonstrate that p21WAF1 regulates the early stages of drug-induced apoptosis in ALL cells and significantly modulates their sensitivity to vorinostat.  相似文献   
142.
Nrf2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. Nrf2 induces the expression of detoxification and antioxidant enzymes, and Keap1 (Kelch-like ECH-associated protein 1), an adaptor subunit of Cullin 3-based E3 ubiquitin ligase, regulates Nrf2 activity. Keap1 also acts as a sensor for oxidative and electrophilic stresses. Keap1 retains multiple sensor cysteine residues that detect various stress stimuli. Increasing attention has been paid to the roles that Nrf2 plays in the protection of our bodies against drug toxicity and stress-induced diseases. On the other hand, Nrf2 is found to promote both oncogenesis and cancer cell resistance against chemotherapeutic drugs. Thus, although Nrf2 acts to protect our body from deleterious stresses, cancer cells hijack the Nrf2 activity to support their malignant growth. Nrf2 has emerged as a new therapeutic target, and both inducers and inhibitors of Nrf2 are awaited. Studies challenging the molecular basis of the Keap1–Nrf2 system functions are now critically important to improve translational studies of the system. Indeed, recent studies identified cross talk between Nrf2 and other signaling pathways, which provides new insights into the mechanisms by which the Keap1–Nrf2 system serves as a potent regulator of our health and disease.  相似文献   
143.
NEK8 (never in mitosis gene A (NIMA)-related kinase 8) is involved in cytoskeleton, cilia, and DNA damage response/repair. Abnormal expression and/or dysfunction of NEK8 are related to cancer development and progression. However, the mechanisms that regulate NEK8 are not well declared. We demonstrated here that pVHL may be involved in regulating NEK8. We found that CAK-I cells with wild-type vhl expressed a lower level of NEK8 than the cells loss of vhl, such as 786-O, 769-P, and A-498 cells. Moreover, pVHL overexpression down-regulated the NEK8 protein in 786-O cells, whereas pVHL knockdown up-regulated NEK8 in CAK-I cells. In addition, we found that the positive hypoxia response elements (HREs) are located in the promoter of the nek8 sequence and hypoxia could induce nek8 expression in different cell types. Consistent with this, down-regulation of hypoxia-inducible factors α (HIF-1α or HIF-2α) by isoform-specific siRNA reduced the ability of hypoxia inducing nek8 expression. In vivo, NEK8 and HIF-1α expression were increased in kidneys of rats subjected to an experimental hypoxia model of ischemia and reperfusion. Furthermore, NEK8 siRNA transfection significantly blocked pVHL-knockdown-induced cilia disassembling, through impairing the pVHL-knockdown-up-regulated NEK8 expression. These results support that nek8 may be a novel hypoxia-inducible gene. In conclusion, our findings show that nek8 may be a new HIF target gene and pVHL can down-regulate NEK8 via HIFs to maintain the primary cilia structure in human renal cancer cells.  相似文献   
144.
《Developmental cell》2022,57(22):2533-2549.e7
  1. Download : Download high-res image (204KB)
  2. Download : Download full-size image
  相似文献   
145.
146.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer. In this study, we analyzed the proteome and K-acetylome in eight pairs of HCC tumors and normal adjacent tissues using a timsTOF Pro instrument. As a result, we identified 9219 K-acetylation sites in 2625 proteins, of which 1003 sites exhibited differential acetylation levels between tumors and normal adjacent tissues. Interestingly, many novel tumor-specific K-acetylation sites were characterized, for example, filamin A (K865), filamin B (K697), and cofilin (K19), suggesting altered activities of these cytoskeleton-modulating molecules, which may contribute to tumor metastasis. In addition, we observed an overall suppression of protein K-acetylation in HCC tumors, especially for enzymes from various metabolic pathways, for example, glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Moreover, the expression of deacetylase sirtuin 2 (SIRT2) was upregulated in HCC tumors, and its role of deacetylation in HCC cells was further explored by examining the impact of SIRT2 overexpression on the proteome and K-acetylome in Huh7 HCC cells. SIRT2 overexpression reduced K-acetylation of proteins involved in a wide range of cellular processes, including energy metabolism. Furthermore, cellular assays showed that overexpression of SIRT2 in HCC cells inhibited both glycolysis and oxidative phosphorylation. Taken together, our findings provide valuable information to better understand the roles of K-acetylation in HCC and to treat this disease by correcting the aberrant acetylation patterns.  相似文献   
147.
3-Phenylpropionitrile was synthesized from Z-3-phenylpropionaldoxime (0.75 M) in a quantitative yield (98 g/l) by the use of cells of Eschrichia coli JM 109/pOxD-9OF, a transformant harboring a gene for a new enzyme, phenylacetaldoxime dehydratase, from Bacillus sp. strain OxB-1. Other arylalkyl- and alkyl-nitriles were also synthesized in high yields from the corresponding aldoximes. Moreover, 3-phenylpropionitrile was successfully synthesized by the recombinant cells in 70 and 100% yields from 0.1 M unpurified E/Z-3-phenylpropionaldoxime, which is spontaneously formed from 3-phenylpropionaldehyde and hydroxylamine in a butyl acetate/water biphasic system and aqueous phase, respectively.  相似文献   
148.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   
149.
150.
Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号