首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76769篇
  免费   5059篇
  国内免费   2728篇
  2023年   1197篇
  2022年   1577篇
  2021年   2512篇
  2020年   2482篇
  2019年   3442篇
  2018年   2984篇
  2017年   2148篇
  2016年   2112篇
  2015年   2579篇
  2014年   5003篇
  2013年   6582篇
  2012年   3834篇
  2011年   4973篇
  2010年   3750篇
  2009年   4059篇
  2008年   4091篇
  2007年   4129篇
  2006年   3708篇
  2005年   3220篇
  2004年   2846篇
  2003年   2261篇
  2002年   2041篇
  2001年   1237篇
  2000年   967篇
  1999年   982篇
  1998年   987篇
  1997年   777篇
  1996年   696篇
  1995年   615篇
  1994年   573篇
  1993年   439篇
  1992年   436篇
  1991年   367篇
  1990年   296篇
  1989年   246篇
  1988年   214篇
  1987年   187篇
  1986年   164篇
  1985年   346篇
  1984年   571篇
  1983年   413篇
  1982年   436篇
  1981年   352篇
  1980年   278篇
  1979年   244篇
  1978年   222篇
  1977年   200篇
  1976年   167篇
  1975年   159篇
  1973年   152篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
122.
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.  相似文献   
123.
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.  相似文献   
124.
125.
《Biomarkers》2013,18(5):424-435
Currently there are no biomarkers for detecting collecting duct damage in man. Antibodies to several collecting duct-specific antigens exist but sandwich assays have been difficult to establish due to the need for two different antibodies to the same protein. We hypothesized that a collecting duct-specific lectin could be used in combination with a collecting duct-specific antibody to negate the need for two different antibodies. The collecting duct specificity of selected antibodies (NiCa II 13C2, Pap XI 3C7, HuPaP VII 2B11 and aquaporin 2), was verified by immunohistochemistry. Aquaporin 2 and Pap XI 3C7 were used successfully in setting up assays with the lectin Dolichos biflorus, using the Meso Scale Discovery (MSD) platform. Antigen expression was highest in the papillae of rat and human kidney (corresponding to the greatest density of collecting ducts) and was also present in normal urine. We propose that further qualification and validation would lead to an assay for detecting collecting duct damage in man.  相似文献   
126.
The chromatographic analysis of carboxyl-containing mycotoxins, such as fumonisin B1, ochratoxin A, and citrinin, presents a continual challenge. Toxins must first be extracted from foods or tissues and then cleaned up before chromatographic separation and detection. Liquid–liquid extraction efficiencies for some carboxylic mycotoxins are marginal for spiked samples and uncertain for incurred residues. Immunoaffinity columns may be useful for concentrating mycotoxins from samples before chromatography. In almost every case, more than one analytical method must be used to confirm the identification of the mycotoxin. The fumonisins are especially troublesome to analyze because they are relatively insoluble in organic solvents, they are not separated easily by gas chromatography, and they do not respond to the usual absorbance or fluorescence detectors used in liquid chromatography. Fluorescence derivatization and electrospray liquid chromatography–mass spectrometry have now made it possible to detect trace levels of mycotoxins. The purity of mycotoxin standards for toxicological studies can be determined by liquid chromatography with either an evaporative light scattering detector or electrospray mass spectrometer. New developments in capillary electrophoresis, nonporous microsphere liquid chromatography, and detection methods for low-volatility compounds show promise for improving the analysis of mycotoxins in the future.  相似文献   
127.
《Biomarkers》2013,18(7):595-600
Abstract

Context: Stroke and/or white matter lesions (WMLs) are significant in Fabry disease. Polymorphisms of angiotensinogen (AGT), AGT Promoter and angiotensinogen II receptor type 1 (AGTR1) are correlated with WMLs.

Objectives: We compared AGT. AGT Promoter and AGTR1 genotypes to stroke incidence, Fabry-specific [Mainz Severity Score Index (MSSI)] severity score, and neurologic sub-score (n-MSSI).

Methods: Sixty-three Fabry patients and 49 matched controls plus historic controls were genotyped. Institutional Review Board approval was received.

Results. C and/or CC alleles of AGT Promoter and AGTR1 were significantly correlated with stroke and n-MSSI.

Discussion/conclusion: Findings are suggestive of role of AGT Promoter and AGTR1 genotypes in Fabry phenotypes.  相似文献   
128.
The TGF-β1-Smad pathway is a well-known negative regulator of muscle growth; however, its potential role in resistance training-induced muscle hypertrophy is not clear. The present study proposed to determine whether and how this pathway may be involved in resistance training-induced muscle hypertrophy. Skeletal muscle samples were collected from the control, trained (RT), control + SB431542 (CITGF), and trained + SB431542 (RTITGF) animals following 3, 5, and 8 weeks of resistance training. Inhibition of the TGF-β1-Smad pathway by SB431542 augmented muscle satellite cells activation, upregulated Akt/mTOR/S6K1 pathway, and attenuated FOXO1 and FOXO3a expression in the CITGF group (all p < .01), thereby causing significant muscle hypertrophy in animals from the CITGF. Resistance training significantly decreased muscle TGF-β1 expression and Smad3 (P-Smad3S423/425) phosphorylation at COOH-terminal residues, augmented Smad2 (P-Smad2-LS245/250/255) and Smad3 (P-Smad3-LSer208) phosphorylation levels at linker sites (all p < .01), and led to a muscle hypertrophy which was unaffected by SB431542, suggesting that the TGF-β1-Smad signaling pathway is involved in resistance training-induced muscle hypertrophy. The effects of inhibiting the TGF-β1-Smad signaling pathway were not additive to the resistance training effects on FOXO1 and FOXO3a expression, muscle satellite cells activation, and the Akt/mTOR/S6K1 pathway. Resistance training effect of satellite cell differentiation was independent of the TGF-β1-Smad signaling pathway. These results suggested that the effect of the TGF-β1-Smad signaling pathway on resistance training-induced muscle hypertrophy can be attributed mainly to its diminished inhibitory effects on satellite cell activation and protein synthesis. Suppressed P-Smad3S423/425 and enhanced P-Smad2-LS245/250/255 and P-Smad3-LSer208 are the molecular mechanisms that link the TGF-β1-Smad signaling pathway to resistance training-induced muscle hypertrophy.  相似文献   
129.
《Phytomedicine》2014,21(5):704-711
Extract of Acanthopanax senticosus harms (EAS) has been shown to have neuroprotective effects on dopaminergic neurons in Parkinson's disease (PD) mice model. α-Synuclein is a key player in the pathogenesis of PD, the elevated level of which is deleterious to dopaminergic neurons, and enhancing its clearance might be a promising strategy for treating PD. To assess the potential of EAS in this regard, we investigated its effect on the SH-SY5Y cells overexpressing wild-type α-synuclein (WT-α-Syn) or A53T mutant α-synuclein (A53T-α-Syn), and the implicated pathway it might mediate. After treatment with EAS, the changes of α-synuclein, caspase-3, parkin, phospho-protein kinase B (Akt), phospho-glycogen synthase kinase 3 beta (GSK3β), and phospho-microtubule-associated protein tau (Tau) in WT-α-Syn or A53T-α-Syn transgenic cells were reverted back to near normal levels, demonstrated by the western blotting and quantitative real-time PCR outcomes. The neuroprotective effects of EAS may be able to protect WT-α-Syn or A53T-α-Syn transgenic SH-SY5Y cells from α-synuclein overexpression and toxicity. Therefore, we speculate that EAS might be a promising candidate for prevention or treatment of α-synuclein-related neurodegenerative disorders such as PD.  相似文献   
130.
Docetaxel resistance remains one of the main problems in clinical treatment of metastatic prostate cancer (PCa). Previous studies identified differently expressed lncRNAs in docetaxel-resistant PCa cell lines, while the potential mechanisms were still unknown. In the present study, we found NEAT1 was expressed at high levels in docetaxel-resistant PCa clinical samples and related cell lines. When knockdown NEAT1, cell proliferation and invasion in docetaxel-resistant PCa cells in vitro and in vivo were downregulated. Our further researches explained that NEAT1 exerts oncogenic function in PCa by competitively ‘sponging’ both miR-34a-5p and miR-204-5p. Inhibition of miR-34a-5p or miR-204-5p expression mimics the docetaxel-resistant activity of NEAT1, whereas ectopic expression of miR-34a-5p or miR-204-5p attenuates the anti-drug function of NEAT1 in PCa cells. Besides, we also found ACSL4 is a target of both miR-34a-5p and miR-204-5p, and ACSL4 was also inhibited by miR-34a-5p and miR-204-5p. Moreover, suppression of miR-34a-5p or/and miR-204-5p greatly restrained the expression of ACSL4 upon NEAT1 overexpression. Joint expression of miR-34a-5p and miR-204a-5p synergistically decreased the expression of ASCL4, indicating miR-34a-5p and miR-204a-5p collaboratively inhibit the expression of ACSL4. Innovatively, we concluded that NEAT1 contributes to the docetaxel resistance by increasing ACSL4 via sponging miR-34a-5p and miR-204-5p in PCa cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号