首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
11.
It is well established that histaminergic neurons in the posterior hypothalamus make connections with whole brain areas and regulate several functions. Recent evidence indicates that histaminergic neurons are heterogeneous cell group and organized into distinct circuits. However, functional circuits of histaminergic neurons have not been fully mapped so far. To address this issue, we have investigated antihistamine-sensitive neuronal activation in the hypothalamus to determine the hypothalamic region primarily innervated by histaminergic neurons. Here we review our recent findings showing the existence of the heterogeneous subpopulations of histaminergic neurons in the TMN that innervated distinct regions to regulate particular functions. We have identified the caudal part of the arcuate nucleus of hypothalamus (cARC) as a target region of histaminergic neurons in food-restricted rats by assessing suppression of c-Fos expression by pretreatment with antihistamines. Histaminergic neurons in the tuberomammillary nucleus (TMN) are morphologically subdivided into five groups (E1–E5). Among the subdivisions, the E3 group was found to be activated corresponding to the activation of cARC neurons. Our findings suggest that this subpopulation selectively innervate cARC neurons. Accumulating reports have also described c-Fos expression in other TMN subpopulations. Various stress challenge induced c-Fos expression primarily in E4 and E5 subpopulations. Motivation- and drug-induced arousal elicited in common activation of ventrolateral part of the TMN containing E1 and E2 subdivisions, which receive projections from wake-active orexin neurons and sleep-active GABA neurons. These lines of evidence support the hypothesis that there are heterogeneous subpopulations in the TMN that innervated distinct regions to regulate particular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号